Airborne and shipborne polarimetric measurements over open ocean and T coastal...

The core information for this publication's citation.: 
Ottaviani, M., R. Foster, A. Gilerson, A. Ibrahim, C. Carrizo, A. El-Habashi, B. Cairns, J. Chowdhary, C. Hostetler, J. W. Hair, S. Burton, Y. Hu, M. Twardowski, N. Stockley, D. Gray, W. Slade, and I. Cetinic (2018), Airborne and shipborne polarimetric measurements over open ocean and T coastal waters: Intercomparisons and implications for spaceborne observations ⁎, Remote Sensing of Environment, 206, 375-390, doi:10.1016/j.rse.2017.12.015.
Abstract: 

Comprehensive polarimetric closure is demonstrated using observations from two in-situ polarimeters and Vector Radiative Transfer (VRT) modeling. During the Ship-Aircraft Bio-Optical Research (SABOR) campaign, the novel CCNY HyperSAS-POL polarimeter was mounted on the bow of the R/V Endeavor and acquired hyperspectral measurements from just above the surface of the ocean, while the NASA GISS Research Scanning Polarimeter was deployed onboard the NASA LaRC's King Air UC-12B aircraft. State-of-the-art, ancillary measurements were used to characterize the atmospheric and marine contributions in the VRT model, including those of the High Spectral Resolution Lidar (HSRL), the AErosol RObotic NETwork for Ocean Color (AERONETOC), a profiling WETLabs ac-9 spectrometer and the Multi-spectral Volume Scattering Meter (MVSM). An openocean and a coastal scene are analyzed, both affected by complex aerosol conditions. In each of the two cases, it is found that the model is able to accurately reproduce the Stokes components measured simultaneously by each polarimeter at different geometries and viewing altitudes. These results are mostly encouraging, considering the different deployment strategies of RSP and HyperSAS-POL, which imply very different sensitivities to the atmospheric and ocean contributions, and open new opportunities in above-water polarimetric measurements. Furthermore, the signal originating from each scene was propagated to the top of the atmosphere to explore the sensitivity of polarimetric spaceborne observations to changes in the water type. As expected, adding polarization as a measurement capability benefits the detection of such changes, reinforcing the merits of the fullStokes treatment in modeling the impact of atmospheric and oceanic constituents on remote sensing observations.

PDF of Publication: 
Download from publisher's website.
Research Program: 
Radiation Science Program (RSP)