Warning message

Member access has been temporarily disabled. Please try again later.
The website is undergoing a major upgrade. Until that is complete, the current site will be visible but logins are disabled.

A Simple Moist Tropical Atmosphere Model: The Role of Cloud Radiative Forcing

Tian, B., and V. Ramanathan (2003), A Simple Moist Tropical Atmosphere Model: The Role of Cloud Radiative Forcing, J. Climate, 16, 2086-2092.
Abstract: 

A simple moist model for the large-scale tropical atmospheric circulation is constructed by combining the simple models of Gill and Neelin and Held. The model describes the first baroclinic mode of the moist troposphere with variable ‘‘gross moist stability’’ in response to given thermodynamic forcing from surface evaporation and atmospheric cloud radiative forcing (CRF), which is a measure of the radiative effects of clouds in the atmospheric radiative heating. When the present model is forced solely by the observed atmospheric CRF, quantitatively reasonable Hadley and Walker circulations are obtained, such as the trades, the ascending branches in the intertropical convergence zone (ITCZ) and the South Pacific Convergence Zone (SPCZ), as well as the descending branches in the cold tongue and subtropics. However, when the model is forced only by the observed surface evaporation, the Walker circulation totally disappears, and the Hadley circulation reverses. These results indicate that, in the context of a moist dynamic model, the spatial variations of atmospheric CRF are more important in terms of driving and maintaining the Hadley and Walker circulations than the spatial variation of surface evaporation.

Research Program: 
Modeling Analysis and Prediction Program (MAP)
Atmospheric Composition
Radiation Science Program (RSP)
Energy & Water Cycle Program (EWCP)
Climate Variability and Change Program
Atmospheric Dynamics and Precipitation Program (ADP)