Warning message

Member access has been temporarily disabled. Please try again later.
The website is undergoing a major upgrade. Until that is complete, the current site will be visible but logins are disabled.
Synonyms: 
SOLVE2
SOLVE 2
SOLVEII
Associated content: 

Column ozone and aerosol optical properties retrieved from direct solar irradiance measurements during SOLVE II

Ozone observations by the Gas and Aerosol Measurement Sensor during SOLVE II

Pitts, M., et al. (2005), Ozone observations by the Gas and Aerosol Measurement Sensor during SOLVE II, Atmos. Chem. Phys. Discuss., 5, 9953-9992.

Differential Absorption Lidar

The NASA Langley Airborne Differential Absorption Lidar (DIAL) system uses four lasers to make DIAL O3 profile measurements in the ultraviolet (UV) simultaneously with aerosol profile measurements in the visible and IR. Recent changes incorporate an additional laser and modifications to the receiver system that will provide aerosol backscatter, extinction, and depolarization profile measurements at three wavelengths (UV, visible, and NIR). For SEAC4RS, the DIAL instrument will include for the first time aerosol and cloud measurements implementing the High Spectral Resolution Lidar (HSRL) technique [Hair, 2008]. The modifications include integrating an additional 3-wavelength (355 nm, 532 nm, 1064 nm) narrowband laser and the receiver to make the following measurements; depolarization at all three wavelengths, aerosol/cloud backscatter and extinction at 532 nm via the HSRL technique, and aerosol/cloud backscatter at the 355 and 1064 nm via the standard backscatter lidar technique. Integration of the aerosol extinction profile at 532nm above and below the aircraft also provides aerosol optical depth (AOD) along the aircraft flight track.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

High Spectral Resolution Lidar

The NASA Langley airborne High Spectral Resolution Lidar (HSRL) is used to characterize clouds and small particles in the atmosphere, called aerosols. From an airborne platform, the HSRL science team studies aerosol size, composition, distribution and movement.

The HSRL-1 instrument is an innovative technology that is similar to radar; however, with lidar, radio waves are replaced with laser light. Lidar allows researchers to see the vertical dimension of the atmosphere, and the advanced HSRL makes measurements that can even distinguish among different aerosol types and their sources. The HSRL technique takes advantage of the spectral distribution of the lidar return signal to discriminate aerosol and molecular signals and thereby measure aerosol extinction and backscatter independently.

The HSRL-1 instrument provides measurements of aerosol extinction at 532 nm and aerosol backscatter and depolarization at 532 and 1064 nm. The HSRL measurements of aerosol extinction, backscattering, and depolarization profiles are being used to:

1) characterize the spatial and vertical distributions of aerosols
2) quantify aerosol extinction and optical thickness contributed by various aerosol types
3) investigate aerosol variability near clouds
4) evaluate model simulations of aerosol transport
5) assess aerosol optical properties derived from a combination of surface, airborne, and satellite measurements.

Instrument Type: 
Point(s) of Contact: 

Pages

Subscribe to RSS - SOLVE II