James Burkholder
Organization:
NOAA Earth System Research Laboratory
Email:
Business Phone:
Work:
(303) 497-3252
Business Address:
Chemical Sciences Division
325 Broadway
Boulder, CO 80305
United StatesFirst Author Publications:
- Burkholder, J., and J. J. Orlando (2023), Advances in Atmospheric Chemical and Physical Processes Published as part of The Journal of Physical Chemistry virtual special issue, J. Phys. Chem. A, 127, 561−564, doi:10.1021/acs.jpca.2c08865.
- Burkholder, J., et al. (2023), OH reaction rate coefficients, infrared spectra, and climate metrics for (E)- and (Z)- 2-perfluoroheptene (2-C7F14) and, Int. J. Chem. Kinetics, doi:10.1002/kin.21643.
- Burkholder, J., et al. (2020), Climate Metrics for C1−C4 Hydrofluorocarbons (HFCs), J. Phys. Chem. A, 124, 4793-4800, doi:10.1021/acs.jpca.0c02679.
- Burkholder, J., et al. (2017), The Essential Role for Laboratory Studies in Atmospheric Chemistry, Environ. Sci. Technol., 51, 2519-2528, doi:10.1021/acs.est.6b04947.
- Burkholder, J., R. A. Cox, and A. R. Ravishankara (2015), Atmospheric Degradation of Ozone Depleting Substances, Their Substitutes, and Related Species, Review, 115, 3704−3759, doi:10.1021/cr5006759.
- Burkholder, J., and [a] (2010), Temperature-Dependent Rate Coefficients and Theoretical Calculations for the OH + Cl2O Reaction V, Wiley-VCH Verlag GmbH & Co. KGaA, Weinheim ChemPhysChem, 4060, 4060-4068, doi:10.1002/cphc.201000420.
- Burkholder, J., et al. (1992), Fourier Transform Spectroscopy of the n2 and n3 Bands of HO2, J Mol. Spectrosc., 151, 493.
- Burkholder, J., et al. (1989), Infrared Line Intensity Measurements in the v = 0-1 Band of the ClO Radical, J. Geophys. Res., 94, 225.
Co-Authored Publications:
- Burkholder, J., et al. (2023), OH reaction rate coefficients, infrared spectra, and climate metrics for (E)- and (Z)- 2-perfluoroheptene (2-C7F14) and, Int. J. Chem. Kinetics, doi:10.1002/kin.21643.
- Chattopadhyay, A., et al. (2022), UV absorption spectrum of monochlorodimethyl sulfide 9CH3SCH2Cl), J. Photochem. & Photobio., A: Chem., 433, 114214.
- Chattopadhyay, A., et al. (2022), OH Radical and Chlorine Atom Kinetics of Substituted Aromatic Compounds: 4‑chlorobenzotrifluoride (p‑ClC6H4CF3), J. Phys. Chem. A, 126, 5407-5419, doi:10.1021/acs.jpca.2c04455.
- Chattopadhyay, A., et al. (2022), Temperature-dependent rate coefficients for the gas-phase OH + furan-2,5-dione (C4H2O3, maleic anhydride) reaction, doi:10.1002/kin.21387.
- Marshall, P., and J. Burkholder (2022), Comment on "Extremely rapid self-reactions of hydrochlorofluoromethanes and hydrochlorofluoroehtanes and implication in destruction of ozone", Chem. Phys. Lett., 800, 139411.
- Marshall, P., and J. Burkholder (2022), Computational study of the gas-phase reactions of sulfuric acid with OH(2PJ), O(3PJ), Cl(2PJ) and O(1D) radicals, Chem. Phys. Lett., 787, 139203.
- Marshall, P., and J. Burkholder (2022), Comment on "Extremely rapid self-reactions of hydrochlorofluoromethanes and hydrochlorofluoroethanes and implications in destruction of ozone", Chem. Phys. Lett..
- Marshall, P., and J. Burkholder (2022), Computational study of the gas-phase reactions of sulfuric acid with OH(2PJ), O(3P), and O(1D2) radicals, Chem. Phys. Lett..
- Papadimitriou, V. C., ab, and J. Burkholder (2022), rsc.li/pccp Kinetic fall-off behavior for the Cl + Furan-2,5dione (C4H2O3, maleic anhydride) reaction† Aparajeo Chattopadhyay, ab Tomasz Gierczak,‡ab Paul Marshall, abc, Pccp, doi:10.1039/To.
- Papanastasiou, D. K., F. Bernard, and J. Burkholder (2022), ACCESS Metrics & More Article Recommendations * sı Supporting Information Downloaded via NOAA BOULDER LABORATORIES LBRY on September 17, 2020 at 14:49:32 (UTC)., Anal. Chem., 1626, 1626−1637, doi:10.1021/acsearthspacechem.0c00157.
- Processes”., P., et al. (2022), Reaction of Cl Atom with c‑C5F8 and c‑C5HF7: Relative and Absolute Measurements of Rate Coefficients and Identification of Degradation Products Published as part of The Journal of Physical Chemistry virtual special issue “Advances in Atmospheric Chemical, J. Phys. Chem. A, 126, 7737-7749, doi:10.1021/acs.jpca.2c05041.
- Spectra, I., et al. (2021), Atmospheric Chemistry of c‑C5HF7 and c‑C5F8: TemperatureDependent OH Reaction Rate Coefficients, Degradation Products,, J. Phys. Chem. A, 125, 1050-1061, doi:10.1021/acs.jpca.0c10561.
- Bernard, F., et al. (2020), Atmospheric lifetimes and global warming potentials of atmospherically T persistent N(CxF2x+1)3, x = 2–4, perfluoroamines, Chemical Physics Letters, 744, 137089, doi:10.1016/j.cplett.2020.137089.
- Brewer, J., et al. (2020), All Rights Reserved. Atmospheric Photolysis of Methyl Ethyl, Diethyl, and Propyl Ethyl Ketones: Temperature‐Dependent UV Absorption Cross Sections, J. Geophys. Res., 124, doi:10.1029/2019JD030391.
- Veres, P., et al. (2020), Global airborne sampling reveals a previously unobserved dimethyl sulfide oxidation mechanism in the marine atmosphere, Proc. Natl. Acad. Sci., 117, doi:10.1073/pnas.1919344117.
- Baasandorj, M., V. C. Papadimitriou, and J. Burkholder (2019), Rate Coefficients for the Gas-Phase Reaction of (E)- and (Z)‑CF3CFHCFCF3 with the OH Radical and Cl-Atom, J. Phys. Chem. A, 123, 5051-5060, doi:10.1021/acs.jpca.9b03095.
- Papanastasiou, D. K., et al. (2019), N(4S3/2) reaction with NO and NO2: Temperature dependent rate T coefficients and O(3P) product yield, Chemical Physics Letters, 728, 102-108, doi:10.1016/j.cplett.2019.04.081.
- Vollmer, M. K., et al. (2019), Abundances, emissions, and loss processes of the long-lived and potent greenhouse gas octafluorooxolane (octafluorotetrahydrofuran, c-C4F8O) in the atmosphere, Atmos. Chem. Phys., 19, 3481-3492, doi:10.5194/acp-19-3481-2019.
- Baasandorj, M., et al. (2018), Rate Coefficient Measurements and Theoretical Analysis of the OH + (E)‑CF3CHHCHCF3 Reaction, J. Phys. Chem. A, 122, 4635-4646, doi:10.1021/acs.jpca.8b02771.
- Bernard, F., et al. (2018), Temperature Dependent Rate Coefficients for the Gas-Phase Reaction of the OH Radical with Linear (L2, L3) and Cyclic (D3, D4) Permethylsiloxanes, J. Phys. Chem. A, 122, 4252-4264, doi:10.1021/acs.jpca.8b01908.
- Bernard, F., et al. (2018), Infrared absorption spectra of N(Cx F2 x +1 )3 , x = 2–5 perfluoroamines, J. Quant. Spectrosc. Radiat. Transfer, 211, 166-171, doi:10.1016/j.jqsrt.2018.02.039.
- Papanastasiou, D. K., et al. (2018), Global warming potential estimates for the C1–C3 hydrochlorofluorocarbons (HCFCs) included in the Kigali Amendment to the Montreal Protocol, Atmos. Chem. Phys., 18, 6317-6330, doi:10.5194/acp-18-6317-2018.
- Bernard, F., et al. (2017), Infrared absorption spectra of linear (L2 –L5 ) and cyclic (D3 –D6 ) permethylsiloxanes, J. Quant. Spectrosc. Radiat. Transfer, 202, 247-254, doi:10.1016/j.jqsrt.2017.08.006.
- Liang, Q., et al. (2017), Deriving Global OH Abundance and Atmospheric Lifetimes for Long-Lived Gases: A Search for CH3CCl3 Alternatives, J. Geophys. Res., 122, 11,914-11,933, doi:10.1002/2017JD026926.
- Davis, M. E., et al. (2016), UV and infrared absorption spectra, atmospheric lifetimes, and ozone depletion and global warming potentials for CCl2FCCl2F (CFC-112), CCl3CClF2 (CFC-112a), CCl3CF3 (CFC-113a), and CCl2FCF3 (CFC-114a), Atmos. Chem. Phys., 16, 8043-8052, doi:10.5194/acp-16-8043-2016.
- Papadimitriou, V. C., and J. Burkholder (2016), OH Radical Reaction Rate Coefficients, Infrared Spectrum, and Global Warming Potential of (CF3)2CFCHHCHF (HFO-1438ezy(E)), J. Phys. Chem. A, 120, 6618-6628, doi:10.1021/acs.jpca.6b06096.
- Bernard, F., et al. (2015), CBrF3 (Halon-1301): UV absorption spectrum between 210 and 320 K, atmospheric lifetime, and ozone depletion potential, Journal of Photochemistry and Photobiology A: Chemistry, 306, 13-20, doi:10.1016/j.jphotochem.2015.03.012.
- Fleming, E., et al. (2015), The impact of current CH4 and N2O atmospheric loss process uncertainties on calculated ozone abundances and trends, J. Geophys. Res., 120, 5267-5293, doi:10.1002/2014JD022067.
- Jubb, A. M., et al. (2015), An atmospheric photochemical source of the persistent greenhouse gas CF4, Geophys. Res. Lett., 42, doi:10.1002/2015GL066193.
- McGillen, M. R., and J. Burkholder (2015), Gas-phase photodissociation of CF3C(O)Cl between 193 and 280 nm, Chemical Physics Letters, 639, 189-194, doi:10.1016/j.cplett.2015.09.024.
- McGillen, M. R., et al. (2015), HCFC-133a (CF3CH2Cl): OH rate coefficient, UV and infrared absorption spectra, and atmospheric implications, Geophys. Res. Lett., 42, 6098-6105, doi:10.1002/2015GL064939.
- Papadimitriou, V. C., et al. (2015), CH3CO + O2 + M (M = He, N2) Reaction Rate Coefficient Measurements and Implications for the OH Radical Product Yield, J. Phys. Chem. A, 119, 7481-7497, doi:10.1021/acs.jpca.5b00762.
- Sauer, F., et al. (2015), Temperature Dependence of the Cl Atom Reaction with Deuterated Methanes, J. Phys. Chem. A, 119, 4396-4407, doi:10.1021/jp508721h.
- Gierczak, T., M. Baasandorj, and J. Burkholder (2014), OH + (E)- and (Z)‑1-Chloro-3,3,3-trifluoropropene‑1 (CF3CHHCHCl) Reaction Rate Coefficients: Stereoisomer-Dependent Reactivity, J. Phys. Chem. A, 118, 11015-11025, doi:10.1021/jp509127h.
- Jubb, A. M., et al. (2014), Methyl-Perfluoroheptene-Ethers (CH3OC7F13): Measured OH Radical Reaction Rate Coefficients for Several Isomers and Enantiomers and Their Atmospheric Lifetimes and Global Warming Potentials, Environ. Sci. Technol., 48, 4954-4962, doi:10.1021/es500888v.
- Papanastasiou, D. K., S. A. McKeen, and J. Burkholder (2014), The very short-lived ozone depleting substance CHBr3 (bromoform): revised UV absorption spectrum, atmospheric lifetime and ozone depletion potential, Atmos. Chem. Phys., 14, 3017-3025, doi:10.5194/acp-14-3017-2014.
- Baasandorj, M., et al. (2013), O(1D) Kinetic Study of Key Ozone Depleting Substances and Greenhouse Gases, J. Phys. Chem. A, 117, 2434-2445, doi:10.1021/jp312781c.
- McGillen, M. R., et al. (2013), CFCl3 (CFC-11): UV absorption spectrum temperature dependence measurements and the impact on its atmospheric lifetime and uncertainty, Geophys. Res. Lett., 40, 1-5, doi:10.1002/grl.50915.
- Papadimitriou, V. C., et al. (2013), 1,2-Dichlorohexafluoro-cyclobutane (1,2-c‑C4F6Cl2, R‑316c) a Potent Ozone Depleting Substance and Greenhouse Gas: Atmospheric Loss Processes, Lifetimes, and Ozone Depletion and Global Warming Potentials for the (E) and (Z) Stereoisomers, J. Phys. Chem. A, 117, 11049-11065, doi:10.1021/jp407823k.
- Papadimitriou, V. C., et al. (2013), NF3: UV absorption spectrum temperature dependence and the atmospheric and climate forcing implications, Geophys. Res. Lett., 40, 440-445, doi:10.1002/grl.50120.
- Papanastasiou, D. K., et al. (2013), Revised UV absorption spectra, ozone depletion potentials, and global warming potentials for the ozone-depleting substances CF2Br2, CF2ClBr, and CF2BrCF2Br, Geophys. Res. Lett., 40, 464-469, doi:10.1002/GRL.50121.
- Baasandorj, M., B. D. Hall, and J. Burkholder (2012), Rate coefficients for the reaction of O(1D) with the atmospherically long-lived greenhouse gases NF3, SF5CF3, CHF3, C2F6, c-C4F8, n-C5F12, and n-C6F14, Atmos. Chem. Phys., 12, 11753-11764, doi:10.5194/acp-12-11753-2012.
- Ghosh, B., et al. (2012), Nitryl Chloride (ClNO2): UV/Vis Absorption Spectrum between 210 and 296 K and O(3P) Quantum Yield at 193 and 248 nm, J. Phys. Chem. A, 116, 5796-5805, doi:10.1021/jp207389y.
- Talukdar, R. K., et al. (2012), Heterogeneous Interaction of N2O5 with HCl Doped H2SO4 under Stratospheric Conditions: ClNO2 and Cl2 Yields, J. Phys. Chem. A, 116, 6003-6014, doi:10.1021/jp210960z.
- Papadimitriou, V. C., et al. (2011), Atmospheric Chemistry of CF3CFdCH2 and (Z)-CF3CFdCHF: Cl and NO3 Rate Coefficients, Cl Reaction Product Yields, and Thermochemical Calculations, J. Phys. Chem. A, 115, 167-181, doi:10.1021/jp110021u.
- Thornberry, T., et al. (2011), Laboratory evaluation of the effect of nitric acid uptake on frost point hygrometer performance, Atmos. Meas. Tech., 4, 289-296, doi:10.5194/amt-4-289-2011.
- Baasandorj, M., et al. (2010), Rate Coefficients for the Gas-Phase Reaction of the Hydroxyl Radical with CH2dCHF and CH2dCF2, J. Phys. Chem. A, 114, 4619-4633, doi:10.1021/jp100527z.
- Carlon, N. R., et al. (2010), UV absorption cross sections of nitrous oxide (N2O) and carbon tetrachloride (CCl4) between 210 and 350 K and the atmospheric implications, Atmos. Chem. Phys., 10, 6137-6149, doi:10.5194/acp-10-6137-2010.
- Feierabend, K. J., D. K. Papanastasiou, and J. Burkholder (2010), ClO Radical Yields in the Reaction of O(1D) with Cl2, HCl, Chloromethanes, and Chlorofluoromethanes, J. Phys. Chem. A, 114, 12052-12061, doi:10.1021/jp107761t.
- Gierczak, T., et al. (2010), Kinetic study of the reaction of the acetyl radical, CH3CO, with O3 using cavity ring-down spectroscopy, Chemical Physics Letters, 484, 160-164, doi:10.1016/j.cplett.2009.11.037.
- Feierabend, K. J., et al. (2009), HCO Quantum Yields in the Photolysis of HC(O)C(O)H (Glyoxal) between 290 and 420 nm, J. Phys. Chem. A, 113, 7784-7794, doi:10.1021/jp9033003.
- Gierczak, T., et al. (2009), Rate Coefficients for the Reaction of the Acetyl Radical, CH3CO, with Cl2 between 253 and 384 K, Int. J. Chem. Kinet., 41, 543-553, doi:10.1002/kin.20430.
- Papanastasiou, D. K., et al. (2009), UV Absorption Spectrum of the ClO Dimer (Cl2O2) between 200 and 420 nm, J. Phys. Chem. A, 113, 13711-13726, doi:10.1021/jp9065345.
- Rajakumar, B., et al. (2008), The CH3CO quantum yield in the 248 nm photolysis of acetone, methyl ethyl ketone, and biacetyl, J. Photochem. Photobio. A: Chem., 199, 336-344, doi:10.1016/j.jphotochem.2008.06.015.
- Rajakumar, B., et al. (2008), The CH3 CO quantum yield in the 248 nm photolysis of acetone, methyl ethyl ketone, and biacetyl, Journal of Photochemistry and Photobiology A: Chemistry, 199, 336-344, doi:10.1016/j.jphotochem.2008.06.015.
- Rajakumar, B., et al. (2007), Visible Absorption Spectrum of the CH3CO Radical, J. Phys. Chem. A, 111, 8950-8958, doi:10.1021/jp073339h.
- Hammer, P. D., et al. (1992), Fourier Transofrm Spectroscopy of the n2 and n3 Bands of HO2, J Mol. Spectrosc., 151, 493.