Andrew K. Heidinger
Organization:
NOAA National Environmental Satellite, Data, and Information Service
Center for Satellite Applications and Research
Email:
Business Phone:
Mobile:
(608) 395-5979
Business Address:
NOAA/NESDIS/GEO
1225 West Dayton
Madison, WI 53706-0000
United StatesFirst Author Publications:
- Andrew Heidinger, et al. (2010), Using CALIPSO to explore the sensitivity to cirrus height in the infrared observations from NPOESS/VIIRS and GOES‐R/ABI, J. Geophys. Res., 115, D00H20, doi:10.1029/2009JD012152.
Co-Authored Publications:
- Stubenrauch, C., et al. (2024), Lessons Learned from the Updated GEWEX Cloud Assessment Database Claudia J. Stubenrauch1 · Stefan Kinne2 · Giulio Mandorli1 · William B. Rossow3 · David M. Winker4 · Steven A. Ackerman5 · Helene Chepfer1 · Larry Di Girolamo6 · Anne Garnier4,7 · Andrew Hei, Surv. Geophys., doi:10.1007/s10712-024-09824-0.
- Benjamin, S. G., et al. (2021), Stratiform Cloud-Hydrometeor Assimilation for HRRR and RAP Model Short-Range Weather Prediction, Mon. Wea. Rev., 149, 2673-2694, doi:10.1175/MWR-D-20-0319.1.
- Foster, M. J., et al. (2020), State of the Climate in 2019: Cloudiness [in “State of the Climate in 2019”], Bull. Am. Meteor. Soc., 101, S51-S53, doi:10.1175/BAMS-D-20-0104.1.
- Li, Y., et al. (2020), Improvement in cloud retrievals from VIIRS through the use of infrared absorption channels constructed from VIIRS+CrIS data fusion, Atmos. Meas. Tech., 13, 4035-4049, doi:10.5194/amt-13-4035-2020.
- Foster, M. J., et al. (2019), State of the Climate in 2018: Cloudiness, Bull. Am. Meteor. Soc., 100, S34-S35, doi:10.1175/2019BAMSStateoftheClimate.1.
- Foster, M. J., et al. (2018), State of the Climate in 2017: Cloudiness, Bull. Am. Meteor. Soc., 99, S31-S33.
- Zhao, X., et al. (2018), Using Long-Term Satellite Observations to Identify Sensitive Regimes and Active Regions of Aerosol Indirect Effects for Liquid Clouds Over Global Oceans, J. Geophys. Res., 123, 457-472, doi:10.1002/2017JD027187.
- Foster, M. J., et al. (2017), State of the Climate in 2016: Cloudiness, Bull. Am. Meteor. Soc., 98, S27-S28.
- Foster, M. J., et al. (2016), State of the Climate: Cloudiness, Bull. Am. Meteor. Soc., 97, S17-S18.
- Song, S., et al. (2016), The spectral signature of cloud spatial structure in shortwave irradiance, Atmos. Chem. Phys., 16, 13791-13806, doi:10.5194/acp-16-13791-2016.
- Staten, P. W., et al. (2016), Subpixel Characterization of HIRS Spectral Radiances Using Cloud Properties from AVHRR, J. Atmos. Oceanic Technol., 33, 1519-1538, doi:10.1175/JTECH-D-15-0187.1.
- Hamann, U., et al. (2014), Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms, Atmos. Meas. Tech., 7, 2839-2867, doi:10.5194/amt-7-2839-2014.
- Miller, S. D., Y. Noh, and Andrew Heidinger (2014), Liquid-top mixed-phase cloud detection from shortwave-infrared satellite radiometer observations: A physical basis, J. Geophys. Res., 119, 8245-8267, doi:10.1002/2013JD021262.
- Roebeling, R., et al. (2013), Evaluating And Improving Cloud Parameter Retrievals, Bull. Am. Meteorol. Soc., 94, ES41, doi:10.1175/BAMS-D-12-00041.1.
- Smith, N., et al. (2013), A Uniform Space–Time Gridding Algorithm for Comparison of Satellite Data Products: Characterization and Sensitivity Study, J. Appl. Meteor. Climat., 52, 255-268, doi:10.1175/JAMC-D-12-031.1.
- Stubenrauch, C. J., et al. (2013), Assessment Of Global Cloud Datasets From Satellites: Project and Database Initiated by the GEWEX Radiation Panel, Bull. Am. Meteorol. Soc., 1031-1049, doi:10.1175/BAMS-D-12-00117.1.
- Wang, C., et al. (2013), A fast radiative transfer model for visible through shortwave infrared spectral reflectances in clear and cloudy atmospheres, J. Quant. Spectrosc. Radiat. Transfer, 116, 122-131, doi:10.1016/j.jqsrt.2012.10.012.
- Wang, C., et al. (2013), Retrieval of Ice Cloud Properties from AIRS and MODIS Observations Based on a Fast High-Spectral-Resolution Radiative Transfer Model, J. Appl. Meteor. Climat., 52, 710-726, doi:10.1175/JAMC-D-12-020.1.
- Yao, Z., et al. (2013), Evaluation of single field-of-view cloud top height retrievals from hyperspectral infrared sounder radiances with CloudSat and CALIPSO measurements, J. Geophys. Res., 118, 9182-9190, doi:10.1002/jgrd.50681.
- Baum, B. A., et al. (2012), MODIS Cloud-Top Property Refinements for Collection 6, J. Appl. Meteor. Climat., 51, 1145-1163, doi:10.1175/JAMC-D-11-0203.1.
- Remer, L., et al. (2012), Retrieving aerosol in a cloudy environment: aerosol product availability as a function of spatial resolution, Atmos. Meas. Tech., 5, 1823-1840, doi:10.5194/amt-5-1823-2012.
- Wang, C., et al. (2011), Retrieval of Ice Cloud Optical Thickness and Effective Particle Size Using a Fast Infrared Radiative Transfer Model, J. Appl. Meteor. Climat., 50, 2283-2297, doi:10.1175/JAMC-D-11-067.1.
- Cermak, J., et al. (2010), Consistency of global satellite‐derived aerosol and cloud data sets with recent brightening observations, Geophys. Res. Lett., 37, L21704, doi:10.1029/2010GL044632.
- Hong, G., et al. (2010), Detecting opaque and nonopaque tropical upper tropospheric ice clouds: A trispectral technique based on the MODIS 8–12 micron window bands, J. Geophys. Res., 115, D20214, doi:10.1029/2010JD014004.
- Wind, G., et al. (2010), Multilayer Cloud Detection with the MODIS Near-Infrared Water Vapor Absorption Band, J. Appl. Meteor. Climat., 49, 2315-2333, doi:10.1175/2010JAMC2364.1.
- Baum, B. A., et al. (2007), Bulk Scattering Properties for the Remote Sensing of Ice Clouds. Part III: High-Resolution Spectral Models from 100 to 3250 cm-1, J. Appl. Meteor. Climat., 46, 423-434, doi:10.1175/JAM2473.1.
- Weisz, E., et al. (2007), Comparison of AIRS, MODIS, CloudSat and CALIPSO cloud top height retrievals, Geophys. Res. Lett., 34, L17811, doi:10.1029/2007GL030676.