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Multi-angle Imaging Spectro-Radiometer
(MISR) / Terra (launched 1999)

Official cloud products:
e cloud top heights
* height-resolved winds

MISRY

Multi-angle Imaging SpectroRadiometer

(stereo with time-delay)

e push-broom acquisition,
~400 km swath
» global coverage in 9 days
* 4 spectral channels, all VNIR
* 9views, 275 m pixels (always
for the red channel used here)
=7 minutes from most fore-ward

to most aft-word images | %))

* Forward facing
cameras




MODerate-resolution Imaging Spectrometer
(MODIS) / Terra (launched 1999) geliE LT EEEESE =

* cloud optical thickness
effective particle radius
(VIS+SWIR algorithm)
cloud top height
(thermal IR channels)

whisk-broom acquisition,
~2330 km swath
» near-global coverage every day
* 36 spectral channels,
VIS/NIR/SWIR/MWIR/LWIR 1 =
* 1view, 0.25-0.50-1.0 km piQ\L
(as wavelength increases)

)
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Multi-angle images “f”" denotes a 3D gridded.~
y field of unknown extinction | © :
‘ coefficient values. ;
arg min ||F(8) — y||2 Need a 3D radiative transfer (RT) /,
solver: SHDOM (restructured), as XN /
forward model F(p). ,§p.
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3D RT formulated as two coupled integral equations
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3D cloud tomography: Demonstration

Ground truth Reconstruction
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* Levis et al. (2015): red channel only, known microphysics (r.,v.), 9 views, 20 m resolution
* 46,656 unknowns & 315,018 unknowns, 2-step iteration scheme (15t being linearized) using SHDOM
 application to data from Airborne Multi-angle Imaging SpectroPolarimeter (AirMSPI), also 20 m resolution

* Levis et al. (2017): VNIR multi-spectral
* basic (profile-only) microphysics (r,,v.) without SWIR (a la MODIS) nor polarization (a la POLDER)
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* Levis et al. (2020): VNIR multi-spectral/multi-polarimetric T [9))
« potential for a 3D full microphysics (N,, r., v.) retrieval using polarization: [/,Q,U] Stokes vector compor ents



Problem: airborne sensors have =20 m pixels
.. while space-based ones (MISR + MODIS) have =250 & 500 m pixels!
— forward 3D RT modeling issues: voxels can be opaque and/or internally variable B
—> inverse problem solution issues: larger and more opaque clouds

The “veiled core” of opaque clouds
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Problem: airborne sensors have =20 m pixels

... while space-based ones (MISR + MODIS) have =250 & 500 m pixels!
-> forward 3D RT modeling issues: voxels can be opaque and/or internally variable &

"’f\

—> inverse problem solution issues: larger and more opaque clouds

The “veiled core” of opaque clouds

s The t =5 for “VC” threshold for =5% tolerance is robust for clouds with
sufficient opacity (say, maximum optical thickness in excess of =20).
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L. Forster, A. B. Davis, B. Mayer, and D. J. Diner (2020), Toward Cloud Tomography from

Space using MISR and MODIS: Locating the “Veiled Core” in Opaque Convective 3D Clouds,

J. Atmos. Sci., 78, 155-166 (2021). DOI: https://doi.org/10.1175/JAS-D-19-0262.1
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Cloud image formation in VNIR+SWIR:

A tale of two diffusion processes

Diffusion process #1 & #2'
* random walks unfold on the

< e gnlt sphere (i.e., direction space) : B0, contrast
ey - in the outer shell (OS) , & threshold

- along-beam drift & lateral dispersion
» gradual loss of directional memory
» pixel-scale details in OS matter
* results in identifiable “features”
in cloud imagery

* RT regime:
> extinction and Beer’s law

» forward-peaked scattering e el
. . SZA =60 o=90" T_object = 20 3
» small-angle/Fokker-Planck approximation 7| A 1T
Superscripts “t” mean “adjoint” or “reciprocal” light, £ o8] &

starting at the pixel/direction of interest in the image, ey W e, | | Lﬁm‘
propagating back into the cloud, and ending at sources. T S S R S S S B SR T S T N T U ST




Cloud image formation in VNIR+SWIR:
A tale of two diffusion processes

Diffusion process #1 & #2" [or #1 & #3] Diffusion process [#2]
* random walks unfold on the * random walks unfold in 3D
unit sphere (i.e., direction space) physical space
* in the outer shell (OS) * in the veiled core (VC)
- along-beam drift & lateral dispersion
» gradual loss of directional memory » gradual loss of positional memory
» pixel-scale details in OS matter * cloud-scale gradients in VC matter
* results in identifiable “features” * controls “contrast” between sunny
in cloud imagery and shaded sides
» extinction and Beer’s law » scaled/transport extinction
» forward-peaked scattering » effective isotropic scattering
» small-angle/Fokker-Planck approximation » diffusion/P, approximation

A. B. Davis, L. Forster, D. J. Diner, and B. Mayer (2020), Toward Cloud Tomography from Space
using MISR and MODIS: The Physics of Image Formation for Opaque Convective Clouds,
J. Atmos. Sci. (in preparation, preprint at https://arxiv.org/abs/2011.14537).
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Cloud image formation in VNIR+SWIR:

90
A tale of two diffusion processes
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Cloud image formation in VNIR+SWIR:
A tale of two diffusion processes

(a) Free-Path Distribution (b)
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Cloud image formation in VNIR+SWIR:
A tale of two diffusion processes

@

Diffusion process [#2]:

* random walks unfold in 3D
physical space

* in the veiled core

» gradual loss of positional memory

Characteristic “diffusion scale,” L,
i.e., the distance from sources
where it gets very dark: .| %"
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What happens to the now close-to-isotropic and already
somewhat-dispersed forward- or backward-propagating
solar radiation when it reaches the veiled core (VC)?

Let: H, = bulk size of VC; 7, = mean optical thickness of
VC; and <p?>1/2 = RMS lateral transport along VC boundary,
from entrance to escape. We know that for ...

* sensor on illuminated side [Davis et al., 1999ab]

<p>>12~ Hy/[(1-g) 7yc]Y/?
- more opaque the VC, less the light will travel;

* sensor on opposite side [Davis & Marshak, 2002]
<?>1/2~ H, . (irrespective of 7, and g)
- light can escape from anywhere.

MODIS
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Cloud tomography forward model:
Need high accuracy ... and efficiency!

Diffusion process #1 & #2' [#37]: > Hybrid RT: 'mpleme:'ﬂt?t'?,{' d'r:, lﬂw
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Summary & Outlook

» 3D cloud tomography using multi-angle, multi-spectral, and multi-pixel data (i.e.,
images) collected from current and future space-based sensors remains a challenge:

* Need adapted forward model (faster 3D RT solver)
* Need informed inverse problem formulation/solution
% Definition of veiled core (VC) and its outer shell (OS) are key.

» Deep dive into the physics of VNIR and SWIR cloud image formation, looking for insights ...

* We uncover two complementary diffusion/random-walk processes:

+* First (in OS, near source) and last (in OS, near sensor) are directional random walks on the 2D
- sphere that end either in reflection or at the VC, with less and more dispersion, respectively.

- pixel-scale “features” - valid targets for detailed cloud tomography

+*» In the VC, solar radiation is transported by a standard positional random walk in 3D space that
Q ends either in reflection or in transmission, with less and more dispersion, respectively.

- cloud-scale “R/T” contrast = only 1-or-2 unknowns for the whole Y"L

» This applies to any passive observation of clouds in solar spectrum ... naked eyes include



