

Multi-angle Imaging Spectro-Radiometer (MISR) / Terra (launched 1999)



## Official cloud products:

- cloud top heights
- height-resolved winds (stereo with time-delay)
- push-broom acquisition,
   ~400 km swath
  - global coverage in 9 days
- 4 spectral channels, all VNIR
- 9 views, 275 m pixels (always for the red channel used here)
   ≈7 minutes from most fore-ward

to most aft-word images

## MODerate-resolution Imaging Spectrometer (MODIS) / Terra (launched 1999)



## Official cloud products:

- cloud optical thickness
- effective particle radius (VIS+SWIR algorithm)
- cloud top height (thermal IR channels)
- whisk-broom acquisition, ~2330 km swath
  - > near-global coverage every day
- 36 spectral channels, VIS/NIR/SWIR/MWIR/LWIR
- 1 view, 0.25–0.50–1.0 km pi (as wavelength increases)

## 3D cloud tomography: Principles



" $\beta$ " denotes a 3D gridded field of *unknown* extinction coefficient values.

Need a 3D radiative transfer (RT) solver: SHDOM (restructured), as forward model  $F(\beta)$ .



## 3D RT formulated as two coupled integral equations

 $\downarrow$  Formal solution of integro-differential 3D RT equation (a.k.a.

spatial integration along beam 
$$(x,\omega)$$
  $\Rightarrow$ 
propagation
directional integration over incoming  $\omega'$   $\Rightarrow$ 
scattering



 $\uparrow$  Definition of source *function*  $J(x,\omega)$ 

## 3D cloud tomography: Demonstration





→ Progress toward
CloudCT mission
success:
poster presentations
#12, #16, #17 & #91

- Levis et al. (2015): red channel only, known microphysics ( $r_e$ ,  $v_e$ ), 9 views, **20 m resolution** 
  - 46,656 unknowns & 315,018 unknowns, 2-step iteration scheme (1st being linearized) using SHDOM
  - application to data from Airborne Multi-angle Imaging SpectroPolarimeter (AirMSPI), also 20 m resolution
- Levis et al. (2017): VNIR multi-spectral
  - basic (profile-only) microphysics  $(r_e, v_e)$  without SWIR (à la MODIS) nor polarization (à la POLDER)
- Levis et al. (2020): VNIR multi-spectral/multi-polarimetric
  - potential for a 3D full microphysics ( $N_e$ ,  $r_e$ ,  $v_e$ ) retrieval using **polarization**: [I,Q,U] Stokes vector components

## **Problem:** airborne sensors have ≈20 m pixels

- ... while space-based ones (MISR + MODIS) have ≈250 & 500 m pixels!
- → forward 3D RT modeling issues: voxels can be opaque and/or internally variable
- → inverse problem solution issues: larger and more opaque clouds



## The "veiled core" of opaque clouds



Manipulation of extinction field in the VC is *not* detectable in multiangle imagery (lost in noise). → Clue for *inverse*problem form ation:

Just one-or-two

unknowns in VC

**Problem:** airborne sensors have ≈20 m pixels

- ... while space-based ones (MISR + MODIS) have ≈250 & 500 m pixels!
- → forward 3D RT modeling issues: voxels can be opaque and/or internally variable
- → inverse problem solution issues: larger and more opaque clouds



## The "veiled core" of opaque clouds



L. Forster, A. B. Davis, B. Mayer, and D. J. Diner (2020), Toward Cloud Tomography from Space using MISR and MODIS: <u>Locating the "Veiled Core" in Opaque Convective 3D Clouds</u>, *J. Atmos. Sci.*, **78**, 155-166 (2021). DOI: <a href="https://doi.org/10.1175/JAS-D-19-0262.1">https://doi.org/10.1175/JAS-D-19-0262.1</a>



## Cloud image formation in VNIR+SWIR:

A tale of two diffusion processes



#### Diffusion process #1 & #2<sup>†</sup>

- random walks unfold on the unit sphere (i.e., direction space)
- in the *outer shell* (OS)
  - → along-beam *drift* & lateral *dispersion*
- gradual loss of *directional* memory
- pixel-scale details in OS matter
- results in identifiable "features" in cloud imagery

#### • RT regime:

- extinction and Beer's law
- forward-peaked scattering
- > small-angle/Fokker-Planck approximation

Superscripts "†" mean "adjoint" or "reciprocal" light, starting at the pixel/direction of interest in the image, propagating back into the cloud, and ending at sources.



# Cloud image formation in VNIR+SWIR: A tale of two diffusion processes





#### Diffusion process #1 & #2<sup>†</sup> [or #1 & #3<sup>†</sup>]

- random walks unfold on the unit sphere (i.e., direction space)
- in the *outer shell* (OS)
  - → along-beam drift & lateral dispersion
- gradual loss of *directional* memory
- *pixel-scale* details in OS matter
- results in identifiable "features" in cloud imagery

#### • RT regime:

- extinction and Beer's law
- forward-peaked scattering
- > small-angle/Fokker-Planck approximation

#### Diffusion process [#2]

- random walks unfold in 3D physical space
- in the **veiled core** (VC)



- gradual loss of positional memory
- cloud-scale gradients in VC matter
- controls "contrast" between sunny and shaded sides

#### • RT regime:

- scaled/transport extinction
- > effective isotropic scattering
- ➤ diffusion/P<sub>1</sub> approximation

A. B. Davis, L. Forster, D. J. Diner, and B. Mayer (2020), Toward Cloud Tomography from Space using MISR and MODIS: <u>The Physics of Image Formation for Opaque Convective Clouds</u>, *J. Atmos. Sci.* (in preparation, preprint at https://arxiv.org/abs/2011.14537).



## Cloud image formation in VNIR+SWIR:

A tale of two diffusion processes



## Diffusion process #1 & #2<sup>†</sup> [or #1 & #3<sup>†</sup>]:

random walks unfold on 2D sphere

- (direction space)
- in the outer shell
- gradual loss of directional memory

## Characteristic (discrete) time scale to forget solar/sensor direction:

$$N^* = 1/\ln(1/g)$$

$$N^* \approx 6.6$$
 for  $g = 0.86$ 

Associated with ...  $\begin{cases} \text{longitudinal drift: } < z_{N^*} > = \ell(1-g^{N^*+1})/(1-g) \\ \text{lateral dispersion: } 2 < \Delta x^2_{N^*} >^{1/2} \end{cases}$ 



... explains empirical threshold \ ≈3/n

optical distance that defines the VC.

# Cloud image formation in VNIR+SWIR: A tale of two diffusion processes





### Diffusion process #1 & #2<sup>†</sup> [or #1 & #3<sup>†</sup>]:

- random walks unfold on 2D sphere (direction space)
- in the *outer shell*
- gradual loss of directional memory

## Characteristic (discrete) time scale to forget solar/sensor direction:

$$N^* = 1/\ln(1/g) \approx (1/g-1)^{-1}$$
  
 $N^* \approx 5 \text{ for } q = 5/6 \approx 0.83$ 

Associated with ...  $\begin{cases} \text{longitudinal drift: } < z_{N^*} > = \ell(1-g^{N^*+1})/(1-g) \\ \text{lateral dispersion: } 2 < \Delta x^2_{N^*} >^{1/2} \end{cases}$ 



... explains empirical threshold \ ≈3/n optical distance that defines the VC.

# Cloud image formation in VNIR+SWIR: A tale of two diffusion processes





### Diffusion process [#2]:

- random walks unfold in 3D physical space
- in the *veiled core*
- gradual loss of positional memory

Characteristic "diffusion scale,"  $L_d$ , i.e., the distance from sources where it gets very dark:  ${}^{6}$ 

$$L_d$$
 x (mean extinction)  
=  $[3(1-\omega)(1-\omega g)]^{-1/2}$ 



What happens to the now *close-to-isotropic* and already *somewhat-dispersed* forward- or backward-propagating solar radiation when it reaches the veiled core (VC)?

**Let:**  $H_{VC}$  = bulk size of VC;  $\tau_{VC}$  = mean optical thickness of VC; and  $<\rho^2>^{1/2}$  = RMS lateral transport along VC boundary, from entrance to escape. We know that for ...

- sensor on *illuminated* side [Davis et al., 1999ab]  $< \rho^2 > 1/2 \sim H_{VC}/[(1-a)\tau_{VC}]^{1/2}$
- → more opaque the VC, less the light will travel;
- sensor on *opposite* side [Davis & Marshak, 2002]  $<\rho^2>^{1/2} \sim H_{VC}$  (irrespective of  $\tau_{VC}$  and g)
- → light can escape from anywhere.



## Cloud tomography forward model:

## Need high accuracy ... and efficiency!



### **Diffusion process #1 & #2**<sup>†</sup> [#3<sup>†</sup>]:

- random walks unfold on 2D sphere (direction space)  $\tau_{shell}$
- in the outer shell
- gradual loss of *directional* memory  $\tau_{core}$
- > standard 3D RT equation solver

## Diffusion process [#2]:

- random walks unfold in 3D physical space
- in the *veiled core*
- gradual loss of positional memory
- > efficient diffusion equation solver

→ Use best of both worlds in a hybrid forward 3D RT model.

#### **Hybrid RT:** Implementation in 1D



#### **Hybrid RT:** Possible Implementation in 3D



## **Summary & Outlook**

- ➤ 3D cloud tomography using multi-angle, multi-spectral, and multi-pixel data (i.e., images) collected from current and future **space-based sensors** remains a challenge.
  - Need adapted forward model (faster 3D RT solver)
  - Need informed inverse problem formulation/solution
    - **❖** Definition of veiled core (VC) and its outer shell (OS) are key.
- > Deep dive into the physics of VNIR and SWIR cloud image formation, looking for insights ...
  - We uncover *two* complementary diffusion/random-walk processes:
    - ❖ First (in OS, near source) and last (in OS, near sensor) are **directional random walks** on the 2D sphere that end either in reflection or at the VC, with less and more dispersion, respectively.
      - → pixel-scale "features" → valid targets for detailed cloud tomography
    - ❖ In the VC, solar radiation is transported by a standard **positional random walk** *in 3D space* that ends either in reflection or in transmission, with less and more dispersion, respectively.
      - $\rightarrow$  cloud-scale "R/T" contrast  $\rightarrow$  only 1-or-2 unknowns for the whole  $\vee$
- > This applies to any passive observation of clouds in solar spectrum ... naked eyes included!