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1. Product Summary 
This document describes a dataset of cloud optical properties generated from the airborne 
Research Scanning Polarimeter (RSP) remote sensing observations during the multi-year 
Observations of Aerosols above Clouds and their Interactions (ORACLES) field campaign. The 
algorithm is based on a Neural Network (NN) that has been trained on modeled clouds as they 
would be observed by RSP for a variety of conditions, and is described in Miller et al. (2020). 
This is the second version of this product (denoted V2), an earlier version (V1) is described in 
Segal-Rozenhaimer et al., (2018). Note that in the file naming convention, revisions numbers 
start at R0, indicating that these are the first files submitted to the ESPO or ASDC archives. 
This algorithm takes as input multi-angle polarimetric measurements in seven visible, near-
infrared and short-wave infrared channels and produces an estimate of Cloud Optical Thickness 
(t) and cloud droplet size distribution Effective Radius (re).  

2. Algorithm Description 
The algorithm is specifically designed for the RSP, an airborne scanning polarimeter with a 
single pixel wide swath (Cairns et al., 1999). This instrument scans in the fore and aft flight 
direction at to make 152 observations at View Zenith Angles (VZA) of ±60˚ (angular resolution 



of 0.802˚). To avoid vignetting and differences based on aircraft direction, this algorithm only 
uses observations in the ±45˚ range (112 angles). The RSP has nine channels with spectral band 
center wavelengths of 0.410, 0.470, 0.555, 0.670, 0.865, 0.960, 1.59, 1.88, 2.26, μm. Two of 
these channels (0.960 and 1.88µm) are sensitive to water vapor concentration. They are thus not 
used directly in the NN algorithm, but they are used to determine water vapor concentration and 
account for its radiometric effects in other channels prior to the application of the NN. 
Furthermore, the RSP is sensitive to linear polarization, so inputs to the RSP are both the total 
reflectance (RI) and the Degree of Linear Polarization (DoLP), which expresses the ratio of 
linearly polarized to total light. The NN algorithm thus takes 112 angles x 7 channels x 2 
polarization states = 1,568 measurement as input per pixel, and produces t and re. The 
measurement inputs have variable uncertainty. Notably, DoLP is generally an order of 
magnitude more certain than RI. Thus, a weighting scheme described in Miller et al., (2020), 
section 3.2 is implemented, which uses an RSP uncertainty model described in Knobelspiesse et 
al., (2019). 
As described in more detail in Miller et al., (2020), section 3.3, this algorithm actually consists of 
two separate NN’s, one for each product (t and re). While both are deep (four hidden layers, 
1,024 notes each), use batch normalization, and are optimized with Adam (Adaptive moment 
estimation, implemented within the Keras python API, Chollet, 2017), they use different 
activation functions. When comparing to other datasets, we found that the hyperbolic tangent 
(TANH) produced the best results for re, while the rectified linear unit function (RELU) is best 
for t. The result of these different NN’s are combined into single files in the archive.  

The NN’s were trained with synthetic data created by a polarized doubling-adding radiative 
transfer model developed at the NASA Goddard Institute for Space Studies (van de Hulst and 
Irvine, 1963, Hansen and Travis, 1974, Cairns and Chowdhary, 2003). Because the RSP was 
deployed on different aircraft during ORACLES, we created different training sets for the high 
altitude ER-2 (used for RSP in 2016) and the lower altitude P-3 (used for RSP in 2017 and 
2018). The ER-2 flies at a near constant altitude of about 20km. The P-3 flies at variable 
altitudes, flight segments in the 5-7km range were most ideal for RSP remote sensing.  



 
Tables 1 and 2, from Miller et al., 2020, show the parameters of the training set. Note that cloud 
top altitude is not one of the modified parameters. In 2016, the cloud top altitude was relatively 
constant for ORACLES, and the ER-2 altitude was sufficiently high that the radiometric 
differences due to variable total column pressure were minimal. For 2017 and 2018, the aircraft 
altitude field is meant to encompass variability in not just aircraft altitude, but cloud top altitude. 
It is a retrieval of both. 
In practice, then, there are four NN’s that are used for this data product: one each for the TANH 
and RELU activation functions for both the [2016] and [2017,2018] training sets.  
We should also note that this is not the only algorithm for the retrieval of cloud properties from 
RSP. The bispectral approach (Nakajima and King, 1990) uses reflected spectral ratios to 
determine t and re, and is the basis of many satellite remote sensing algorithms. The polarimetric 
approach, on the other hand, uses multi-angle polarimetric observations of the cloudbow to 
determine re and the effective variance,  ve (t is later determined from reflectances), (Bréon and 
Goloub, 1998). These algorithms are sensitive to fundamentally different phenomena, as is 
explored in Miller et al, (2018). RSP has the capability to make the measurements required for 
both of those approaches, and as such includes two different parameter results in the WTRCLD 
product. The NN algorithm, on the other hand, incorporates both radiometric and polarimetric 
data and therefore can act like either algorithm. In observations where the clouds were optical 
thick and spatially homogenous, this algorithm tends to act more like a polarimetric retrieval. In 
the more difficult cases, with optically thinner and spatially heterogenous clouds, the NN 
algorithm produces results more similar to the bispectral algorithm.   

Table 1. Parameter grid space used to generate the training set (N = 44,064 cases) for the operational NN used for cloud retrievals from

ER-2 during ORACLES 2016 field campaign. Aircraft altitude is set as constant at 20 km.

Parameter [units] # of grid points Training Grid

re [µm] 6 5, 7.5, 10, 12.5, 15, 20

ve [-] 6 0.01, 0.03, 0.05, 0.07, 0.1, 0.15

⌧ [-] 6 2.5, 5, 10, 15, 20, 30

SZA [�] 12 10, 15, 20, 25, 30, 35, 40, 45, 50, 55, 60, 65

RAA [-] 17 0, 2, 4, 6, 8, 12, 16, 20, 24, 28, 32, 40, 50, 60, 70, 80, 90

Table 2. Parameter grid space used to generate the training set (N = 261,144 cases) for the operational NN used for cloud retrievals from

P-3 during ORACLES 2017 field campaign.

Parameter [units] # of grid points Training Grid

Aircraft Altitude [m] 3 5000, 6000, 7000

re [µm] 6 5, 7.5, 10, 12.5, 15, 20

ve [-] 6 0.01, 0.03, 0.05, 0.07, 0.1, 0.15

⌧ [-] 6 2.5, 5, 10, 15, 20, 30

SZA [�] 13 5 to 65 in increments of 5

RAA [�] 31 0 to 90 in increments of 3

there was more variability in cloud top height during 2017 as the clouds observed were often transitioning between low-level

stratocumulus regime and into mid-level cloud regimes. Since the atmospheric scattering between the flying platform and the

cloud top has an effect on the measured signals, the generated cases might not be optimal for all the scenes flown during 2017.

The role that all of these training set decisions play in the behavior of our retrieval results will be discussed in section 4.

3.2 Pre-processing Input Observations5

In our former NN retrieval scheme, we reduced the dimensionality of the input layer by reducing measurement vector inputs

to principle components (PC) before introducing them as input to the NN (Segal-Rozenhaimer et al., 2018). Our improved re-

trieval scheme described here is instead trained with and applied to the measurement vector itself. This solution was conceived

to allow more appropriate weighting of RI or DoLP, which have significantly different measurement uncertainties. The size of

the input layer changed from 122 inputs (100 PC for DoLP, 20 for RI, and the two geometry inputs, i.e. SZA and RAA for each10

case) to 1570 (concatenating RI and DoLP, each spanning 784 values, covering the 112 instrument viewing angles in seven

wavelengths plus the two geometry input values). To accommodate this ten-fold increase in the size of the input layer, we im-

plemented a new approach to our NN architecture, which will be discussed in section 3.3. The advantage of this approach is that

it allows us to adequately scale (weight) the different input sources (RI and DoLP) according to their measurement uncertainty.
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Finally, the effective variance, ve, is a parameter we do not include in our archival files. While 
this is a parameter that was incorporated into our NN training set, and is retrieved with standard 
polarimetric algorithms, we found that its retrieval with the NN’s was not robust.  

3. Implementation 
The NN algorithm has several steps, as is illustrated in Figure 1. 

1. “Level 1” (radiometric and polarimetric) data are reorganized so that they represent 
multi-angle views of the cloud top. The assumed altitude of this reorganization is 1000m, 
based on parallax. 

2. Standard WTRCLD files are created. Two products in these files are used in NN 
processing: 

a. A liquid water cloud mask 
b. Above cloud water vapor pressure derived from the 0.960 and 1.88µm channels 

3. Next, level 1 observations are assessed individually. If they represent a cloud (2a) then 
the above cloud water vapor pressure (2b) and model reanalysis (MERRA-2 output and 
standard atmosphere vertical profiles) are used to correct for trace gas absorption. 

4. The corrected data are then standardized (weighted) using expectations of RI and DoLP 
measurement uncertainty.  

5. The appropriate NN ([2016] or [2017,2018]) is applied for both the RELU and TANH 
cases to determine t and re. The results are combined into a single file, archived in both 
ICARTT and NetCDF formats. 

 
Figure 1 NN algorithm flowchart. 
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4. Assessment 
This section provides a general assessment of the RSP NN cloud retrieval dataset, in terms of its 
statistical likelihood, variability from year to year, sensitivity to geometry, and comparisons to 
bispectral and polarimetric retrievals in the WTRCLD product. A more in-depth analysis is 
found in Miller et al., (2020).  

 
Figure 2 contains histograms for t and re , broken down by year. These histograms have not been normalized, so it 
is clear that more observations were made in 2016 than the other years. This is because the ER-2 continuously 
operated in a manner appropriate for remote sensing instruments, while in other years the P-3 aircraft served the 
needs of both remote sensing and in situ sampling instruments. We can also see that 2016 properties were generally 
monomodal, and more narrowly distributed than other years. 

 
Figure 3 shows 2D histograms of t and re. We can see that 2016 is dominated by a single mode with both t and re 

around 11, with t and re monotonically increasing together in a linear fashion. This is not the case for other years, 
which also show a mode of lower optical depth (around 5) and effective radius, but wider overall range. 



Both the bispectral and polarimetric cloud retrieval algorithms can be sensitive to measurement 
geometry. This is especially the case for the latter, which needs to observe the cloud bow and 
other features that are exhibited at very specific scattering angles. We therefore assessed the 
sensitivity of our results to the maximum scattering angle in each observation. It is clear from 
Figures 4 and 5 that there is minimal sensitivity to scattering angle maximum, although we 
should note that the WTRCLD retrieval algorithm, used to identify the presence of clouds, is 
only activated for observations with at least a maximum scattering angle of 150˚.  

 
Figure 4 2D histogram of maximum scattering angle versus cloud optical thickness. 

 
Figure 5 2D histogram of maximum scattering angle versus cloud droplet effective radius. 



 
Figure 6 2016 NN effective radius retrieval with respect to bispectral (left) and polarimetric (right) algorithms. 

 
Figure 7 2016 NN cloud optical thickness with respect to bispectral (left) and polarimetric (right) algorithms. 
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Figure 8 2017 NN effective radius retrieval with respect to bispectral (left) and polarimetric (right) algorithms. 

 
Figure 9 2017 NN cloud optical thickness with respect to bispectral (left) and polarimetric (right) algorithms. 
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Figure 10 2018 NN effective radius retrieval with respect to bispectral (left) and polarimetric (right) algorithms. 

 
Figure 11 2018 NN cloud optical thickness with respect to bispectral (left) and polarimetric (right) algorithms. 
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6. Data Access 
Data are hosted at the NASA Earth Science Projects Office (ESPO) archive separately for each 
year. They are additionally mirrored at the NASA GISS RSP archive. Ultimately, the ESPO 
archive will be migrated to the NASA Langley ASDC, to which the DOI will then point. Details 
are below: 
 
2016 
ESPO DOI: 10.5067/Suborbital/ORACLES/ER2/2016_V2 
GISS URL: https://data.giss.nasa.gov/pub/rsp/ORACLES_2016/ 
 
2017 
ESPO DOI: 10.5067/Suborbital/ORACLES/P3/2017_V2 



GISS URL: https://data.giss.nasa.gov/pub/rsp/ORACLES_2017/ 
 
2018 
ESPO DOI: 10.5067/Suborbital/ORACLES/P3/2018_V2 
GISS URL: https://data.giss.nasa.gov/pub/rsp/ORACLES_2018/ 
 
 


