Yuekui Yang
Organization:
NASA Goddard Space Flight Center
Email:
Business Phone:
Work:
(301) 614-6313
Business Address:
Goddard Space Flight Center Code 613
Greenbelt
Greenbelt, MD 20771
United StatesFirst Author Publications:
- Yang, Y., et al. (2021), This is an open access article under the terms of the Creative Commons Attribution-NonCommercial-NoDerivs License, which permits use and distribution in any medium, provided the original work is properly cited, the use is non-commercial and no modificatio, Earth and Space, 1, 10.
- Yang, Y., et al. (2019), Cloud products from the Earth Polychromatic Imaging Camera (EPIC): algorithms and initial evaluation, Atmos. Meas. Tech., 12, 2019-2031, doi:10.5194/amt-12-2019-2019.
- Yang, Y., et al. (2017), Snow grain size retrieval over the polar ice sheets with the Ice, Cloud, and land Elevation Satellite (ICESat) observations, J. Quant. Spectrosc. Radiat. Transfer, 188, 159-164, doi:10.1016/j.jqsrt.2016.03.033.
- Yang, Y., et al. (2014), First Satellite-detected Perturbations of Outgoing Longwave Radiation Associated with Blowing Snow Events over Antarctica, Geophys. Res. Lett., 41, 730-735, doi:10.1002/2013GL058932.
- Yang, Y., et al. (2013), A method of retrieving cloud top height and cloud geometrical thickness with oxygen A and B bands for the Deep Space Climate Observatory (DSCOVR) mission: Radiative transfer simulations, J. Quant. Spectrosc. Radiat. Transfer, 122, 141-149, doi:10.1016/j.jqsrt.2012.09.017.
- Yang, Y., et al. (2013), Assessment of Cloud Screening With Apparent Surface Reflectance in Support of the ICESat-2 Mission, IEEE Trans. Geosci. Remote Sens., 51, 1037-1045, doi:10.1109/TGRS.2012.2204066.
- Yang, Y., et al. (2011), Cloud Impact on Surface Altimetry From a Spaceborne 532-nm Micropulse Photon-Counting Lidar: System Modeling for Cloudy and Clear Atmospheres, IEEE Trans. Geosci. Remote Sens., 49, 4910-4919, doi:10.1109/TGRS.2011.2153860.
- Yang, Y., et al. (2010), Uncertainties in Ice-Sheet Altimetry From a Spaceborne 1064-nm Single-Channel Lidar Due to Undetected Thin Clouds, IEEE Trans. Geosci. Remote Sens., 48, 250-259, doi:10.1109/TGRS.2009.2028335.
- Yang, Y., et al. (2008), Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal, J. Atmos. Sci., 65, 3513-3527, doi:10.1175/2008JAS2744.1.
- Yang, Y., and L. Di Girolamo (2008), Impacts of 3-D radiative effects on satellite cloud detection and their consequences on cloud fraction and aerosol optical depth retrievals, J. Geophys. Res., 113, D04213, doi:10.1029/2007JD009095.
- Yang, Y., L. Di Girolamo, and D. Mazzoni (2007), Selection of the automated thresholding algorithm for the Multi-angle Imaging SpectroRadiometer Radiometric Camera-by-Camera Cloud Mask over land, Remote Sensing of Environment, 107, 159-171, doi:10.1016/j.rse.2006.05.020.
Co-Authored Publications:
- Delgado-Bonal, A., et al. (2024), Global cloud optical depth daily variability based on DSCOVR/ EPIC observations, TYPE Original Research, doi:10.3389/frsen.2024.1390683.
- Delgado‐Bonal, A., et al. (2020), Daytime Variability of Cloud Fraction From DSCOVR/EPIC Observations, J. Geophys. Res., 125, 1-11, doi:10.1029/2019JD031488.
- Xiaomei, X. L. U., et al. (2020), Antarctic spring ice-edge blooms observed from space by ICESat-2 ⁎ ⁎⁎, Remote Sensing of Environment, xxx, xxxx, doi:10.1016/j.rse.2020.111827.
- Zhou, Y., et al. (2020), Cloud detection over snow and ice with oxygen A- and B-band observations from the Earth Polychromatic Imaging Camera (EPIC), Atmos. Meas. Tech., 13, 1575-1591, doi:10.5194/amt-13-1575-2020.
- Ganeshan, M., and Y. Yang (2019), Evaluation of the Antarctic boundary layer thermodynamic structure in MERRA2 using dropsonde observations from the Concordiasi campaign, Earth and Space Science, 6, doi:10.1029/2019EA000890.
- Gao, B., R. Li, and Y. Yang (2019), Remote Sensing of Daytime Water Leaving Reflectances of Oceans and Large Inland Lakes from EPIC onboard the DSCOVR Spacecraft at Lagrange-1 Point, doi:10.3390/s19051243.
- Gao, M., et al. (2019), Cloud remote sensing with EPIC/DSCOVR observations: A sensitivity study with radiative transfer simulations, J. Quant. Spectrosc. Radiat. Transfer, 230, 56-60, doi:10.1016/j.jqsrt.2019.03.022.
- Davis, A. B., et al. (2018), Cloud information content in EPIC/DSCOVR’s oxygen A- and B-band channels: A physics-based approach, J. Quant. Spectrosc. Radiat. Transfer, 220, 84-96, doi:10.1016/j.jqsrt.2018.09.006.
- Davis, A. B., et al. (2018), Cloud information content in EPIC/DSCOVR’s oxygen A- and B-band channels: An optimal estimation approach, J. Quant. Spectrosc. Radiat. Transfer, 216, 6-16, doi:10.1016/j.jqsrt.2018.05.007.
- Ganeshan, M., and Y. Yang (2018), A Regional Analysis of Factors Affecting the Antarctic Boundary Layer During the Concordiasi Campaign, J. Geophys. Res., 123, doi:10.1029/2018JD028629.
- Lu, X., et al. (2018), Laser pulse bidirectional reflectance from CALIPSO mission, Atmos. Meas. Tech., 11, 3281-3296, doi:10.5194/amt-11-3281-2018.
- Marshak, A., et al. (2018), Earth Observations From Dscovr Epic Instrument, Bull. Am. Meteorol. Soc., 1829-1850, doi:10.1175/BAMS-D-17-0223.1.
- Palm, S. P., et al. (2018), Insight into the Thermodynamic Structure of Blowing-Snow Layers in Antarctica from Dropsonde and CALIPSO Measurements, J. Appl. Meteor. Climat., 57, 2733-2748, doi:10.1175/JAMC-D-18-0082.1.
- Palm, S. P., V. Kayetha, and Y. Yang (2018), Toward a Satellite-Derived Climatology of Blowing Snow Over Antarctica, J. Geophys. Res., 123, doi:10.1029/2018JD028632.
- Markus, T., et al. (2017), The Ice, Cloud, and land Elevation Satellite-2 (ICESat-2): Science requirements, concept, and implementation, Remote Sensing of Environment, 190, 260-273, doi:10.1016/j.rse.2016.12.029.
- Palm, S. P., et al. (2017), Blowing snow sublimation and transport over Antarctica from 11 years of CALIPSO observations, The Cryosphere, 11, 2555-2569, doi:10.5194/tc-11-2555-2017.
- Holdaway, D., and Y. Yang (2016), Study of the Effect of Temporal Sampling Frequency on DSCOVR Observations Using the GEOS-5 Nature Run Results (Part I), Earth’s Radiation Budget. Remote Sens., 8, 98, doi:10.3390/rs8020098.
- Holdaway, D., and Y. Yang (2016), Study of the Effect of Temporal Sampling Frequency on DSCOVR Observations Using the GEOS-5 Nature Run Results (Part II), Cloud Coverage. Remote Sens., 8, 431, doi:10.3390/rs8050431.
- Meyer, K. G., Y. Yang, and S. Platnick (2016), Uncertainties in cloud phase and optical thickness retrievals from the Earth Polychromatic Imaging Camera (EPIC), Atmos. Meas. Tech., 9, 1785-1797, doi:10.5194/amt-9-1785-2016.
- Yu, H., et al. (2015), The fertilizing role of African dust in the Amazon rainforest: A first multiyear assessment based on data from Cloud-Aerosol Lidar and Infrared Pathfinder Satellite Observations, Geophys. Res. Lett., 42, 1984-1991, doi:10.1002/2015GL063040.
- Yu, H., et al. (2012), An integrated analysis of aerosol above clouds from A-Train multi-sensor measurements, Remote Sensing of Environment, 121, 125-131, doi:10.1016/j.rse.2012.01.011.
- Palm, S. P., et al. (2011), Satellite remote sensing of blowing snow properties over Antarctica, J. Geophys. Res., 116, D16123, doi:10.1029/2011JD015828.