Patrick Minnis
Organization:
NASA Langley Research Center
Science Systems and Applications, Inc.
Email:
Website:
First Author Publications:
- Minnis, P. (2024), Encyclopedia of Atmospheric Sciences, 3rd Edition, Elsevier Ltd., Oxford, UK, A. Detwiler, Ed., 10.1016/B978-0-323-9, dot.
- Minnis, P., et al. (2023), VIIRS Edition 1 Cloud Properties for CERES, Part 1: Algorithm Adjustments and Results, Algorithm Adjustments and Results. Remote Sens., 15, 578, doi:10.3390/rs15030578.
- Minnis, P., et al. (2021), CERES MODIS Cloud Product Retrievals for Edition 4—Part I: Algorithm Changes, IEEE Trans. Geosci. Remote Sens., 59, 2744-2780, doi:10.1109/TGRS.2020.3008866.
- Minnis, P., et al. (2019), Advances in neural network detection and retrieval of multilayer clouds for CERES using multispectral satellite data, Proc. SPIE Remote Sens. Clouds and Atmospheric., XXIV, 1-12, doi:10.1117/12.2532931.
- Minnis, P., et al. (2016), Estimating nocturnal opaque ice cloud optical depth from MODIS multispectral infrared radiances using a neural network method, J. Geophys. Res., 121, 4907-4932, doi:10.1002/2015JD024456.
- Minnis, P. (2015), Contrails, Encyclopedia of Atmospheric Sciences, 2nd Edition, Vol. 2, Elsevier Ltd, Oxford, UK,Gerald. R. North (editor in chief), John Pyle and Fuqing Zhang (editors), 121-132, doi:10.1016/B978-0-12-382225-3.00036-0.
- Minnis, P., et al. (2013), Linear contrail and contrail cirrus properties determined from satellite data, Geophys. Res. Lett., 40, 3220-3226, doi:10.1002/grl.50569.
- Minnis, P., et al. (2012), Simulations of Infrared Radiances over a Deep Convective Cloud System Observed during TC4: Potential for Enhancing Nocturnal Ice Cloud Retrievals, Remote Sens., 4, 3022-3054, doi:10.3390/rs4103022.
- Minnis, P., et al. (2011), CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part I: Algorithms, IEEE Trans. Geosci. Remote Sens., 49, 11-2892).
- Minnis, P., et al. (2011), CERES Edition-2 cloud property retrievals using TRMM VIRS and Terra and Aqua MODIS data, Part II: Examples of average results and comparisons with other data, IEEE Trans. Geosci. Remote Sens., 49, 11-2892).
- Minnis, P., et al. (2011), CERES Edition-2 Cloud Property Retrievals Using TRMM VIRS and Terra and Aqua MODIS Data—Part II: Examples of Average Results and Comparisons With Other Data, IEEE Trans. Geosci. Remote Sens., 49, 4401-4430, doi:10.1109/TGRS.2011.2144602.
- Minnis, P., et al. (2008), Cloud Detection in Nonpolar Regions for CERES Using TRMM VIRS and Terra and Aqua MODIS Data, IEEE Trans. Geosci. Remote Sens., 46, 3857-3884, doi:10.1109/TGRS.2008.2001351.
- Minnis, P., et al. (2008), Estimating the top altitude of optically thick ice clouds from thermal infrared satellite observations using CALIPSO data, Geophys. Res. Lett., 35, L12801, doi:10.1029/2008GL033947.
- Minnis, P., et al. (2008), Assessment of the Visible Channel Calibrations of the VIRS on TRMM and MODIS on Aqua and Terra, J. Atmos. Oceanic Technol., 25, 385-400, doi:10.1175/2007JTECHA1021.1.
- Minnis, P. (2007), Contrails, Our Changing Planet, 71-73.
- Minnis, P., et al. (2007), Ice cloud properties in ice-over-water cloud systems using Tropical Rainfall Measuring Mission (TRMM) visible and infrared scanner and TRMM Microwave Imager data, J. Geophys. Res., 112, D06206, doi:10.1029/2006JD007626.
- Minnis, P., et al. (2005), Contrail properties over the eastern North Pacific from AVHRR data, Meteorologische Zeitschrift, 14, 515-523, doi:10.1127/0941-2948/2005/0056.
- Minnis, P., et al. (2005), Relationships between radiosonde and RUC-2 meteorological conditions and cloud occurrence determined from ARM data, J. Geophys. Res., 110, D23204, doi:10.1029/2005JD006005.
- Minnis, P., D. R. Doelling, and A. V. Gambheer (2004), Azimuthal anisotropy of longwave and infrared window radiances from the Clouds and the Earth’s Radiant Energy System on the Tropical Rainfall Measuring Mission and Terra satellites, J. Geophys. Res., 109, D08202, doi:10.1029/2003JD004471.
- Minnis, P., et al. (2004), Contrails, Cirrus Trends, and Climate, J. Climate, 17, 1671-1685.
Co-Authored Publications:
- Dong, X., and P. Minnis (2024), Chapter 6: Stratus, stratocumulus, and remote sensing. in Fast Processes in Large Scale Atmospheric Models: Progress, Challenges, and Opportunities. L. Donner, Y Liu, and P. Kollias, Eds. AGU Wiley Publ., 10.1002/978111952901, 141-200.
- Ren, T., et al. (2024), On the Consistency of Ice Cloud Optical Models for Spaceborne Remote Sensing Applications and Broadband Radiative Transfer Simulations, J. Geophys. Res..
- Stubenrauch, C., et al. (2024), Lessons Learned from the Updated GEWEX Cloud Assessment Database Claudia J. Stubenrauch1 · Stefan Kinne2 · Giulio Mandorli1 · William B. Rossow3 · David M. Winker4 · Steven A. Ackerman5 · Helene Chepfer1 · Larry Di Girolamo6 · Anne Garnier4,7 · Andrew Hei, Surv. Geophys., doi:10.1007/s10712-024-09824-0.
- Sun-Mack, S., et al. (2024), Identification of ice-over-water multilayer clouds using multispectral satellite data in an artificial neural network, Atmos. Meas. Tech., 17, 3323-3346, doi:10.5194/amt-17-3323-2024.
- Li, D., et al. (2023), On the Scattering-Angle Dependence of the Spectral Consistency of Ice Cloud Optical Thickness Retrievals Based on Geostationary Satellite Observations, IEEE Trans. Geosci. Remote Sens., 61, 4108012, doi:10.1109/TGRS.2023.3331970.
- Benjamin, S. G., et al. (2021), Stratiform Cloud-Hydrometeor Assimilation for HRRR and RAP Model Short-Range Weather Prediction, Mon. Wea. Rev., 149, 2673-2694, doi:10.1175/MWR-D-20-0319.1.
- Feldman, D., W. Su, and P. Minnis (2021), Subdiurnal to Interannual Frequency Analysis of Observed and Modeled Reflected Shortwave Radiation From Earth, Geophys. Res. Lett., 48, doi:10.1029/20220GL089221.
- Valero, F., A. Marshak, and P. Minnis (2021), Lagrange Point Missions: The Key to next Generation Integrated Earth Observations. DSCOVR Innovation, DSCOVR Innovation. Front. Remote Sens., 2, 745938, doi:10.3389/frsen.2021.745938.
- Yost, C., et al. (2021), CERES MODIS Cloud Product Retrievals for Edition 4—Part II: Comparisons to CloudSat and CALIPSO, IEEE Trans. Geosci. Remote Sens., 59, 3695-3724, doi:10.1109/TGRS.2020.3015155.
- Painemal, D., et al. (2020), Reducing uncertainties in satellite estimates of aerosol–cloud interactions over the subtropical ocean by integrating vertically resolved aerosol observations, Atmos. Chem. Phys., 20, 7167-7177, doi:10.5194/acp-20-7167-2020.
- Su, W., et al. (2020), Determining the daytime Earth radiative flux from National Institute of Standards and Technology Advanced Radiometer (NISTAR) measurements, Atmos. Meas. Tech., 13, 429-443, doi:10.5194/amt-13-429-2020.
- Albrecht, B., et al. (2019), Cloud System Evolution In The Trades (Cset): Following Evolution of Boundary Layer Cloud Systems with the NSF-NCAR GV, Bull. Am. Meteorol. Soc., 100, 93-121, doi:10.1175/BAMS-D-17-0180.1.
- Duda, D., et al. (2019), Northern Hemisphere contrail properties derived from Terra and Aqua MODIS data for 2006 and 2012, Atmos. Chem. Phys., 19, 5313-5330, doi:10.5194/acp-19-5313-2019.
- Gultepe, I., et al. (2019), A Review of High Impact Weather for Aviation Meteorology, Pure Appl. Geophys., 176, 1869-1921, doi:10.1007/s00024-019-02168-6.
- Kurzrock, F., et al. (2019), Evaluation of WRF-DART (ARW v3.9.1.1 and DART Manhattan release) multiphase cloud water path assimilation for short-term solar irradiance forecasting in a tropical environment, Geosci. Model. Dev., 12, 3939-3954, doi:10.5194/gmd-12-3939-2019.
- Saito, M., et al. (2019), An Efficient Method for Microphysical Property Retrievals in Vertically Inhomogeneous Marine Water Clouds Using MODIS‐ CloudSat Measurements, J. Geophys. Res., 124, 2174-2193, doi:10.1029/2018JD029659.
- Sun-Mack, S., et al. (2019), Calibration Changes to Terra MODIS Collection-5 Radiances for CERES Edition 4 Cloud Retrievals, IEEE Trans. Geosci. Remote Sens., 1-17, doi:10.1109/TGRS.2018.2829902.
- Trepte, Q. Z., et al. (2019), Global Cloud Detection for CERES Edition 4 Using Terra and Aqua MODIS Data, IEEE Trans. Geosci. Remote Sens., 57, 9410-9449, doi:10.1109/TGRS.2019.2926620.
- Jones, T. A., et al. (2018), Comparison of Cloud Microphysics Schemes in a Warn-on-Forecast System Using Synthetic Satellite Objects, Jones Et Al., doi:10.1175/WAF-D-18-0112.1.
- Loeb, N., et al. (2018), Impact of Ice Cloud Microphysics on Satellite Cloud Retrievals and Broadband Flux Radiative Transfer Model Calculations, J. Climate, 31, 1851-1864, doi:10.1175/JCLI-D-17-0426.1.
- McHardy, T. M., et al. (2018), Comparison of Daytime Low-Level Cloud Properties Derived From GOES and ARM SGP Measurements, J. Geophys. Res., 123, 8221-8237, doi:10.1029/2018JD028911.
- Ryu, Y., et al. (2018), Quantifying errors in surface ozone predictions associated with clouds over the CONUS: a WRF-Chem modeling study using satellite cloud retrievals, Atmos. Chem. Phys., 18, 7509-7525, doi:10.5194/acp-18-7509-2018.
- Skinner, P., et al. (2018), Object-Based Verification of a Prototype Warn-on-Forecast System, Skinner Et Al., doi:10.1175/WAF-D-18-0020.1.
- Su, W., et al. (2018), Determining the Shortwave Radiative Flux From Earth Polychromatic Imaging Camera, J. Geophys. Res., 123, 11,479-11,491, doi:10.1029/2018JD029390.
- Tian, J., et al. (2018), Comparisons of Ice Water Path in Deep Convective Systems Among Ground-Based, GOES, and CERES-MODIS Retrievals, J. Geophys. Res., 123, doi:10.1002/2017JD027498.
- Wall, C. J., et al. (2018), The Life Cycle of Anvil Clouds and the Top-of-Atmosphere Radiation Balance over the Tropical West Pacific, J. Climate, 31, 10059-10080, doi:10.1175/JCLI-D-18-0154.1.
- Wood, R., et al. (2018), Ultraclean Layers and Optically Thin Clouds in the Stratocumulus-to-Cumulus Transition. Part I: Observations, J. Atmos. Sci., 75, 1631-1652, doi:10.1175/JAS-D-17-0213.1.
- Yost, C., et al. (2018), A prototype method for diagnosing high ice water content probability using satellite imager data, Atmos. Meas. Tech., 11, 1615-1637, doi:10.5194/amt-11-1615-2018.
- Brasseur, G. P., et al. (2017), Impact of Aviation: FAA's Aviation Climate Change Research Initiative (ACCRI) Phase II, Bull. Am. Meteorol. Soc., 98, 561-583, doi:10.1175/BAMS-D-13-00089.1.
- Foster, M. J., et al. (2017), State of the Climate in 2016: Cloudiness, Bull. Am. Meteor. Soc., 98, S27-S28.
- Khlopenkov, K. V., et al. (2017), Development of Multi-Sensor Global Cloud and Radiance Composites for Earth Radiation Budget Monitoring from DSCOVR. Proc. SPIE Conf. Remote Sens. Clouds and the Atmos. XXII, Warsaw, Poland, 10424-19, 11-14, doi:10.1117/12.2278645.
- Painemal, D., et al. (2017), Aerosol and cloud microphysics covariability in the northeast Pacific boundary layer estimated with ship-based and satellite remote sensing observations, J. Geophys. Res., 122, 2403-2418, doi:10.1002/2016JD025771.
- Painemal, D., et al. (2017), Entrainment rate diurnal cycle in marine stratiform clouds estimated from geostationary satellite retrievals and a meteorological forecast model, Geophys. Res. Lett., 44, doi:10.1002/2017GL074481.
- Reid, J., et al. (2017), Ground-based High Spectral Resolution Lidar observation of aerosol vertical distribution in the summertime Southeast United States, J. Geophys. Res., 122, doi:10.1002/2016JD025798.
- Ryu, Y., et al. (2017), Improved modeling of cloudy-sky actinic flux using satellite cloud retrievals, Geophys. Res. Lett., 44, doi:10.1002/2016GL071892.
- Scarino, B., et al. (2017), Global clear-sky surface skin temperature from multiple satellites using a single-channel algorithm with angular anisotropy corrections, Atmos. Meas. Tech., 10, 351-371, doi:10.5194/amt-10-351-2017.
- Schumann, U., et al. (2017), Properties of individual contrails: a compilation of observations and some comparisons, Atmos. Chem. Phys., 17, 403-438, doi:10.5194/acp-17-403-2017.
- Sun-Mack, S., et al. (2017), Detection of Single and Multilayer Clouds in an Artificial Neural Network Approach. Proc. SPIE Conf. Remote Sens. Clouds and the Atmos. XXII, Warsaw, Poland, 10424-7, 11-14, doi:10.1117/12.2277397.
- Zhang, Z., et al. (2017), Intercomparisons of marine boundary layer cloud properties from the ARM CAP-MBL campaign and two MODIS cloud products, J. Geophys. Res., 122, doi:10.1002/2016JD025763.
- Bhatt, R., et al. (2016), A Consistent AVHRR Visible Calibration Record Based on Multiple Methods Applicable for the NOAA Degrading Orbits. Part I: Methodology, J. Atmos. Oceanic Technol., 33, 2499-2515, doi:10.1175/JTECH-D-16-0044.1.
- Creamean, J. M., et al. (2016), The relationships between insoluble precipitation residues, clouds, and precipitation over California’s southern Sierra Nevada during winter storms, Atmos. Environ., 140, 298-310, doi:10.1016/j.atmosenv.2016.06.016.
- Doelling, D. R., et al. (2016), A Consistent AVHRR Visible Calibration Record Based on Multiple Methods Applicable for the NOAA Degrading Orbits. Part II: Validation, J. Atmos. Oceanic Technol., 33, 2517-2534, doi:10.1175/JTECH-D-16-0042.1.
- Dong, X., et al. (2016), A radiation closure study of Arctic stratus cloud microphysical properties using the collocated satellite-surface data and Fu-Liou radiative transfer model, J. Geophys. Res., 121, doi:10.1002/2016JD025255.
- Eleftheratos, K., et al. (2016), Kostas Eleftheratos, Gunnar Myhre, Patrick Minnis, Ioannis Kapsomenakis, and Christos Zerefos, Chapter 61, 827, doi:10.1007/978-3-319-30127-3_61.
- Eleftheratos, K., et al. (2016), Chapter 61, Manmade Changes in Cirrus Clouds from 1984 to 2007: A Preliminary Study. In: Grammelis P. (eds) Energy, Transportation and Global Warming, Green Energy and Technology. Springer, Cham., 61, 827-836, doi:10.1007/978-3-319-30127-3_61.
- Foster, M. J., et al. (2016), State of the Climate: Cloudiness, Bull. Am. Meteor. Soc., 97, S17-S18.
- Jones, T. A., et al. (2016), Storm-Scale Data Assimilation and Ensemble Forecasting with the NSSL Experimental Warn-on-Forecast System. Part II: Combined Radar and Satellite Data Experiments, Wea. Forecasting, 297, 297-327, doi:10.1175/WAF-D-15-0107.1.
- Painemal, D., et al. (2016), First extended validation of satellite microwave liquid water path with ship-based observations of marine low clouds, Geophys. Res. Lett., 43, doi:10.1002/2016GL069061.
- Scarino, B., et al. (2016), A Web-Based Tool for Calculating Spectral Band Difference Adjustment Factors Derived From SCIAMACHY Hyperspectral Data, IEEE Trans. Geosci. Remote Sens., 54, 2529-2542, doi:10.1109/TGRS.2015.2502904.
- Tang, S., et al. (2016), Large-scale vertical velocity, diabatic heating and drying profiles associated with seasonal and diurnal variations of convective systems observed in the GoAmazon2014/5 experiment, Atmos. Chem. Phys., 16, 14249-14264, doi:10.5194/acp-16-14249-2016.
- Toon, B., et al. (2016), Planning, implementation, and scientific goals of the Studies of Emissions and Atmospheric Composition, Clouds and Climate Coupling by Regional Surveys (SEAC4RS) field mission, J. Geophys. Res., 121, 4967-5009, doi:10.1002/2015JD024297.
- Beswick, K., et al. (2015), Cirrus properties from commercial aircraft measurements and implications for flight operations, Tellus, 67, 22, doi:10.3402/tellusb.v67.27876.
- Chen, Y., et al. (2015), Variational Assimilation of Cloud Liquid/Ice Water Path and Its Impact on NWP, J. Appl. Meteor. Climat., 54, 1809-1825, doi:10.1175/JAMC-D-14-0243.1.
- Hong, G., and P. Minnis (2015), Effects of spherical inclusions on scattering properties of small ice cloud particles, J. Geophys. Res., 120, 2951-2969, doi:10.1002/2014JD022494.
- Jones, T. A., et al. (2015), Simultaneous Radar and Satellite Data Storm-Scale Assimilation Using an Ensemble Kalman Filter Approach for 24 May 2011, Mon. Wea. Rev., 143, 165-194, doi:10.1175/MWR-D-14-00180.1.
- Painemal, D., et al. (2015), Mean Structure and Diurnal Cycle of Southeast Atlantic Boundary Layer Clouds: Insights from Satellite Observations and Multiscale Modeling Framework Simulations, J. Climate, 28, 324-341, doi:10.1175/JCLI-D-14-00368.1.
- Painemal, D., P. Minnis, and M. Nordeen (2015), Aerosol variability, synoptic-scale processes, and their link to the cloud microphysics over the northeast Pacific during MAGIC, J. Geophys. Res., 120, doi:10.1002/2015JD023175.
- Stanfield, R. E., et al. (2015), Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations. Part II: TOA Radiation Budget and CREs, J. Climate, 28, 1842-1864, doi:10.1175/JCLI-D-14-00249.1.
- Wang, S., et al. (2015), Simulations of cloud-radiation interaction using large-scale forcing derived from the CINDY/DYNAMO northern sounding array, J. Adv. Modeling Earth Syst., 7, 1472-1498, doi:10.1002/2015MS000461.
- Wood, R., et al. (2015), Clouds, Aerosols, And Precipitation In The Marine Boundary Layer: An ARM Mobile Facility Deployment, Bull. Am. Meteorol. Soc., 419.
- Yan, H., et al. (2015), Comparison of CERES-MODIS cloud microphysical properties with surface observations over Loess Plateau, J. Quant. Spectrosc. Radiat. Transfer, 153, 65-76, doi:10.1016/j.jqsrt.2014.09.009.
- Eck, T. F., et al. (2014), Observations of rapid aerosol optical depth enhancements in the vicinity of polluted cumulus clouds, Atmos. Chem. Phys., 14, 11633-11656, doi:10.5194/acp-14-11633-2014.
- Fan, J., et al. (2014), Aerosol impacts on California winter clouds and precipitation during CalWater 2011: local pollution versus long-range transported dust, Atmos. Chem. Phys., 14, 81-101, doi:10.5194/acp-14-81-2014.
- Hamann, U., et al. (2014), Remote sensing of cloud top pressure/height from SEVIRI: analysis of ten current retrieval algorithms, Atmos. Meas. Tech., 7, 2839-2867, doi:10.5194/amt-7-2839-2014.
- Liu, C., et al. (2014), A two-habit model for the microphysical and optical properties of ice clouds, Atmos. Chem. Phys., 14, 13719-13737, doi:10.5194/acp-14-13719-2014.
- Painemal, D., et al. (2014), Mean Structure and diurnal cycle of Southeast Atlantic boundary layer clouds: Insights from satellite observations and multiscale modeling framework simulations, J. Climate (submitted).
- Painemal, D., S. Kato, and P. Minnis (2014), Boundary layer regulation in the southeast Atlantic cloud microphysics during the biomass burning season as seen by the A-train satellite constellation, J. Geophys. Res., 119, doi:10.1002/2014JD022182.
- Shrestha, A. K., et al. (2014), Unfiltering Earth Radiation Budget Experiment (ERBE) Scanner Radiances Using the CERES Algorithm and Its Evaluation with Nonscanner Observations, J. Atmos. Oceanic Technol., 31, 843-859, doi:10.1175/JTECH-D-13-00072.1.
- Stanfield, R. E., et al. (2014), Assessment of NASA GISS CMIP5 and Post-CMIP5 Simulated Clouds and TOA Radiation Budgets Using Satellite Observations. Part I: Cloud Fraction and Properties, J. Climate, 27, 4189-4208, doi:10.1175/JCLI-D-13-00558.1.
- Sun-Mack, S., et al. (2014), Regional Apparent Boundary Layer Lapse Rates Determined from CALIPSO and MODIS Data for Cloud-Height Determination, J. Appl. Meteor. Climat., 53, 990-1011, doi:10.1175/JAMC-D-13-081.1.
- Xi, B., et al. (2014), Comparison of marine boundary layer cloud properties from CERES-MODIS Edition 4 and DOE ARM AMF measurements at the Azores, J. Geophys. Res., 119, doi:10.1002/2014JD021813.
- Bedka, S., et al. (2013), Properties of linear contrails in the Northern Hemisphere derived from 2006 Aqua MODIS observations, Geophys. Res. Lett., 40, 1-6, doi:10.1029/2012GL054363.
- Creamean, J. M., et al. (2013), Dust and Biological Aerosols from the Sahara and Asia Influence Precipitation in the Western U.S., Science, 339, 1572-1578, doi:10.1126/science.1227279.
- Doelling, D. R., et al. (2013), The Intercalibration of Geostationary Visible Imagers Using Operational Hyperspectral SCIAMACHY Radiances, IEEE Trans. Geosci. Remote Sens., 51, 1245-1254, doi:10.1109/TGRS.2012.2227760.
- Duda, D., et al. (2013), Estimation of 2006 Northern Hemisphere contrail coverage using MODIS data, Geophys. Res. Lett., 40, 1-6, doi:10.1002/grl.50097.
- Jones, T. A., et al. (2013), Evaluation of a Forward Operator to Assimilate Cloud Water Path into WRF-DART, Mon. Wea. Rev., 141, 2272-2289, doi:10.1175/MWR-D-12-00238.1.
- Mecikalski, J. R., P. Minnis, and R. Palikonda (2013), Use of satellite derived cloud properties to quantify growing cumulus beneath cirrus clouds, Atmos. Res., 120–121, 192-201, doi:10.1016/j.atmosres.2012.08.017.
- Painemal, D., P. Minnis, and S. Sun-Mack (2013), The impact of horizontal heterogeneities, cloud fraction, and liquid water path on warm cloud effective radii from CERES-like Aqua MODIS retrievals, Atmos. Chem. Phys., 13, 9997-10003, doi:10.5194/acp-13-9997-2013.
- Painemal, D., P. Minnis, and L. O’Neill (2013), The Diurnal Cycle of Cloud-Top Height and Cloud Cover over the Southeastern Pacific as Observed by GOES-10, J. Atmos. Sci., 70, 2393-2408, doi:10.1175/JAS-D-12-0325.1.
- Scarino, B., et al. (2013), Retrieving Clear-Sky Surface Skin Temperature for Numerical Weather Prediction Applications from Geostationary Satellite Data, Remote Sens., 5, 342-366, doi:10.3390/rs5010342.
- Spangenberg, D., et al. (2013), Contrail radiative forcing over the Northern Hemisphere from 2006 Aqua MODIS data, Geophys. Res. Lett., 40, 1-6, doi:10.1002/GRL.50168.
- Stubenrauch, C. J., et al. (2013), Assessment Of Global Cloud Datasets From Satellites: Project and Database Initiated by the GEWEX Radiation Panel, Bull. Am. Meteorol. Soc., 1031-1049, doi:10.1175/BAMS-D-12-00117.1.
- Van Weverberg, K., et al. (2013), The Role of Cloud Microphysics Parameterization in the Simulation of Mesoscale Convective System Clouds and Precipitation in the Tropical Western Pacific, J. Atmos. Sci., 70, 1104-1128, doi:10.1175/JAS-D-12-0104.1.
- Jean-Paul, J., et al. (2013), Comment on “Large Volcanic Aerosol Load in the Stratosphere Linked to Asian Monsoon Transport”, Science, 339, 647-d, doi:10.1126/science.1227817.
- Allen, G., et al. (2012), Gravity wave-induced perturbations in marine stratocumulus, Quart. Jour. Royal Met. Soc., 139, 32-45, doi:10.1002/qj.1947.
- Doelling, D. R., et al. (2012), Spectral Reflectance Corrections for Satellite Intercalibrations Using SCIAMACHY Data, IEEE Geosci. Remote Sens. Lett., 9, 119-123, doi:10.1109/LGRS.2011.2161751.
- Feng, Z., et al. (2012), Life cycle of midlatitude deep convective systems in a Lagrangian framework, J. Geophys. Res., 117, D23201, doi:10.1029/2012JD018362.
- Fridlind, A. M., et al. (2012), A comparison of TWP-ICE observational data with cloud-resolving model results, J. Geophys. Res., 117, D05204, doi:10.1029/2011JD016595.
- Hong, G., et al. (2012), Estimating effective particle size of tropical deep convective clouds with a look-up table method using satellite measurements of brightness temperature differences, J. Geophys. Res., 117, D06207, doi:10.1029/2011JD016652.
- Iwabuchi, H., et al. (2012), Physical and optical properties of persistent contrails: Climatology and interpretation, J. Geophys. Res., 117, D06215, doi:10.1029/2011JD017020.
- Painemal, D., and P. Minnis (2012), On the dependence of albedo on cloud microphysics over marine stratocumulus clouds regimes determined from Clouds and the Earth’s Radiant Energy System (CERES) data, J. Geophys. Res., 117, D06203, doi:10.1029/2011JD017120.
- Painemal, D., et al. (2012), GOES-10 microphysical retrievals in marine warm clouds: Multi-instrument validation and daytime cycle over the southeast Pacific, J. Geophys. Res., 117, D19212, doi:10.1029/2012JD017822.
- Renault, L., et al. (2012), Upwelling response to atmospheric coastal jets off central Chile: A modeling study of the October 2000 event, J. Geophys. Res., 117, C02030, doi:10.1029/2011JC007446.
- Saide Peralta, et al. (2012), Improving aerosol distributions below clouds by assimilating satellite-retrieved cloud droplet number, Proc. Natl. Acad. Sci., 109, 11939, doi:10.1073/pnas.1205877109.
- Smith, W., et al. (2012), Determining the Flight Icing Threat to Aircraft with Single-Layer Cloud Parameters Derived from Operational Satellite Data, J. Appl. Meteor. Climat., 51, 1794-1810, doi:10.1175/JAMC-D-12-057.1.
- Xie, Y., et al. (2012), Determination of ice cloud models using MODIS and MISR data, Intl. J. Remote. Sens., 33, 4219-4253, doi:10.1080/01431161.2011.642323.
- Xie, Y., et al. (2012), Parameterization of contrail radiative properties for climate studies, Geophys. Res. Lett., 39, L00F02, doi:10.1029/2012GL054043.
- Yi, B., et al. (2012), Simulation of the global contrail radiative forcing: A sensitivity analysis, Geophys. Res. Lett., 39, L00F03, doi:10.1029/2012GL054042.
- Feng, Z., et al. (2011), Top-of-atmosphere radiation budget of convective core/stratiform rain and anvil clouds from deep convective systems, J. Geophys. Res., 116, D23202, doi:10.1029/2011JD016451.
- Goldberg, M., et al. (2011), The Global Space-Based Inter-Calibration System, Bull. Am. Meteorol. Soc., 92, 467-475, doi:10.1175/2010BAMS2967.1.
- Heymsfield, A. J., et al. (2011), Formation and Spread of Aircraft-Induced Holes in Clouds, Science, 77-81.
- Heymsfield, A., et al. (2011), Formation and Spread of Aircraft-Induced Holes in Clouds, Science, 333, 77-81, doi:10.1126/science.1202851.
- Kato, S., et al. (2011), Improvements of top‐of‐atmosphere and surface irradiance computations with CALIPSO‐, CloudSat‐, and MODIS‐derived cloud and aerosol properties, J. Geophys. Res., 116, D19209, doi:10.1029/2011JD016050.
- Li, J., et al. (2011), Radiative effect differences between multi-layered and single-layer clouds derived from CERES, CALIPSO, and CloudSat data, J. Quant. Spectrosc. Radiat. Transfer, 112, 361-375, doi:10.1016/j.jqsrt.2010.10.006.
- Smith, G. L. S., et al. (2011), Clouds and Earth Radiant Energy System (CERES), a review: Past, present and future, Advances in Space Research, 48, 254-263, doi:10.1016/j.asr.2011.03.009.
- Wood, R., et al. (2011), The VAMOS Ocean-Cloud-Atmosphere-Land Study Regional Experiment (VOCALS-REx): goals, platforms, and field operations, Atmos. Chem. Phys., 11, 627-654, doi:10.5194/acp-11-627-2011.
- Yan, H., et al. (2011), Comparison of CERES surface radiation fluxes with surface observations over Loess Plateau, Remote Sensing of Environment, 115, 1489-1500, doi:10.1016/j.rse.2011.02.008.
- Zheng, X., et al. (2011), Observations of the boundary layer, cloud, and aerosol variability in the southeast Pacific near-coastal marine stratocumulus during VOCALS-REx, Atmos. Chem. Phys., 11, 9943-9959, doi:10.5194/acp-11-9943-2011.
- Bedka, K., and P. Minnis (2010), GOES 12 observations of convective storm variability and evolution during the Tropical Composition, Clouds and Climate Coupling Experiment field program, J. Geophys. Res., 115, D00J13, doi:10.1029/2009JD013227.
- Chang, F.-L., et al. (2010), Comparisons of passive satellite-deduced overlapping cloud properties and CALIPSO/CloudSat data, EOS Trans AGU, 91, 22-25.
- Chang, F., et al. (2010), Evaluation of satellite‐based upper troposphere cloud top height retrievals in multilayer cloud conditions during TC4, J. Geophys. Res., 115, D00J05, doi:10.1029/2009JD013305.
- Chang, F., et al. (2010), A modified method for inferring upper troposphere cloud top height using the GOES 12 imager 10.7 and 13.3 mm data, J. Geophys. Res., 115, D06208, doi:10.1029/2009JD012304.
- Chen, B., et al. (2010), Detection of dust aerosol by combining CALIPSO active lidar and passive IIR measurements, Atmos. Chem. Phys., 10, 4241-4251, doi:10.5194/acp-10-4241-2010.
- Chepfer, H., et al. (2010), The GCM-Oriented CALIPSO Cloud Product (CALIPSO-GOCCP), J. Geophys. Res., 115, D00H16, doi:10.1029/2009JD012251.
- Huang, J., et al. (2010), Dust aerosol effect on semi-arid climate over Northwest China detected from A-Train satellite measurements, Atmos. Chem. Phys., 10, 6863-6872, doi:10.5194/acp-10-6863-2010.
- Kato, S., et al. (2010), Relationships among cloud occurrence frequency, overlap, and effective thickness derived from CALIPSO and CloudSat merged cloud vertical profiles, J. Geophys. Res., 115, D00H28, doi:10.1029/2009JD012277.
- Kennedy, A. D., et al. (2010), Evaluation of the NASA GISS Single-Column Model Simulated Clouds Using Combined Surface and Satellite Observations, J. Climate, 23, 5175-5192, doi:10.1175/2010JCLI3353.1.
- Lin, B., et al. (2010), Estimations of climate sensitivity based on top-of-atmosphere radiation imbalance, Atmos. Chem. Phys., 10, 1923-1930, doi:10.5194/acp-10-1923-2010.
- Lin, B., et al. (2010), Radiation characteristics of low and high clouds in different oceanic regions observed by CERES and MODIS, Intl. J. Remote Sens., 31, 6473-6492, doi:10.1080/01431160903548005.
- Toon, B., et al. (2010), Planning, implementation, and first results of the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J04, doi:10.1029/2009JD013073.
- Wang, W., et al. (2010), Dusty cloud properties and radiative forcing over dust source and downwind regions derived from A‐Train data during the Pacific Dust Experiment, J. Geophys. Res., 115, D00H35, doi:10.1029/2010JD014109.
- Xi, B., et al. (2010), A 10 year climatology of cloud fraction and vertical distribution derived from both surface and GOES observations over the DOE ARM SPG site, J. Geophys. Res., 115, D12124, doi:10.1029/2009JD012800.
- Yang, P., et al. (2010), Contrails And Induced Cirrus: Optics and Radiation, Bull. Am. Meteorol. Soc., 473-478.
- Yost, C., et al. (2010), Comparison of GOES‐retrieved and in situ measurements of deep convective anvil cloud microphysical properties during the Tropical Composition, Cloud and Climate Coupling Experiment (TC4), J. Geophys. Res., 115, D00J06, doi:10.1029/2009JD013313.
- Zheng, X., et al. (2010), Observed aerosol and liquid water path relationships in marine stratocumulus, Geophys. Res. Lett., 37, L17803, doi:10.1029/2010GL044095.
- Allen, G., et al. (2009), Modulation of tropical convection by breaking Rossby waves, Q. J. R. Meteorol. Soc., 135, 125-137, doi:10.1002/qj.349.
- Brioude, J., et al. (2009), Effect of biomass burning on marine stratocumulus clouds off the California coast, Atmos. Chem. Phys., 9, 8841-8856, doi:10.5194/acp-9-8841-2009.
- Duda, D., R. Palikonda, and P. Minnis (2009), Relating observations of contrail persistence to numerical weather analysis output, Atmos. Chem. Phys., 9, 1357-1364, doi:10.5194/acp-9-1357-2009.
- Duda, D., and P. Minnis (2009), Basic Diagnosis and Prediction of Persistent Contrail Occurrence Using High-Resolution Numerical Weather Analyses/Forecasts and Logistic Regression. Part I: Effects of Random Error, J. Appl. Meteor. Climat., 48, 1780-1789, doi:10.1175/2009JAMC2056.1.
- Duda, D., and P. Minnis (2009), Basic Diagnosis and Prediction of Persistent Contrail Occurrence Using High-Resolution Numerical Weather Analyses/Forecasts and Logistic Regression. Part II: Evaluation of Sample Models, J. Appl. Meteor. Climat., 48, 1790-1802, doi:10.1175/2009JAMC2057.1.
- Huang, J., et al. (2009), Taklimakan dust aerosol radiative heating derived from CALIPSO observations using the Fu-Liou radiation model with CERES constraints, Atmos. Chem. Phys., 9, 4011-4021, doi:10.5194/acp-9-4011-2009.
- Kärcher, B., et al. (2009), Factors controlling contrail cirrus optical depth, Atmos. Chem. Phys., 9, 6229-6254.
- Saunders, W., et al. (2009), Where is the best site on Earth? Domes A, B, C, and F, and Ridges A and B, Publ. Astronom. Soc. Pac., 121, 976-992.
- Waliser, D. E., et al. (2009), Cloud ice: A climate model challenge with signs and expectations of progress, J. Geophys. Res., 114, D00A21, doi:10.1029/2008JD010015.
- Xie, Y., et al. (2009), Effect of the inhomogeneity of ice crystals on retrieving ice cloud optical thickness and effective particle size, J. Geophys. Res., 114, D11203, doi:10.1029/2008JD011216.
- Yost, C., et al. (2009), Parameterization of cirrus microphysical property profiles using GOES, CloudSat, and CALIPSO data. Eos Trans., AGU, 90, 14-17.
- Cho, H.-M., et al. (2008), Depolarization ratio and attenuated backscatter for nine cloud types: analyses based on collocated CALIPSO lidar and MODIS measurements, Opt. Express, 16, 3931-3948.
- Dong, X., et al. (2008), Comparison of CERES-MODIS stratus cloud properties with groundbased measurements at the DOE ARM Southern Great Plains site, J. Geophys. Res., 113, D03204, doi:10.1029/2007JD008438.
- Dong, X., et al. (2008), Using observations of deep convective systems to constrain atmospheric column absorption of solar radiation in the optically thick limit, J. Geophys. Res., 113, D10206, doi:10.1029/2007JD009769.
- Hong, G., et al. (2008), Optical properties of ice particles in young contrails, J. Quant. Spectrosc. Radiat. Transfer, 109, 2635-2647, doi:10.1016/j.jqsrt.2008.06.005.
- Hong, G., et al. (2008), Do contrails significantly reduce daily temperature range?, Geophys. Res. Lett., 35, L23815, doi:10.1029/2008GL036108.
- Huang, J., et al. (2008), Long-range transport and vertical structure of Asian dust from CALIPSO and surface measurements during PACDEX, J. Geophys. Res., 113, D23212, doi:10.1029/2008JD010620.
- Lin, B., et al. (2008), Assessment of global annual atmospheric energy balance from satellite observations, J. Geophys. Res., 113, D16114, doi:10.1029/2008JD009869.
- Smith, W., et al. (2008), An evaluation of operational GOES-derived single-layer cloud top heights with ARSCL data over the ARM Southern Great Plains Site, Geophys. Res. Lett., 35, L13820, doi:10.1029/2008GL034275.
- Su, J., et al. (2008), Estimation of Asian dust aerosol effect on cloud radiation forcing using Fu-Liou radiative model and CERES measurements, Atmos. Chem. Phys., 8, 2763-2771, doi:10.5194/acp-8-2763-2008.
- Wang, H., et al. (2008), Experiments with Cloud Properties: Impact on Surface Radiative Fluxes, J. Atmos. Oceanic Technol., 25, 1034-1040, doi:10.1175/2007JTECHO546.1.
- Yang, P., et al. (2008), Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part I. Single-scattering properties of ice crystals with surface roughness, IEEE Trans. Geosci. Remote Sens., 46, 1940-1947, doi:10.1109/TGRS.2008.916471.
- Yang, P., et al. (2008), Uncertainties associated with the surface texture of ice particles in satellite-based retrieval of cirrus clouds: Part II. Effect of particle surface roughness on retrieved cloud optical thickness and effective particle size, IEEE Trans. Geosci. Remote Sens., 46, 1948-1957, doi:10.1109/TGRS.2008.916472.
- Yang, Y., et al. (2008), Retrievals of Thick Cloud Optical Depth from the Geoscience Laser Altimeter System (GLAS) by Calibration of Solar Background Signal, J. Atmos. Sci., 65, 3513-3527, doi:10.1175/2008JAS2744.1.
- Chepfer, H., et al. (2007), Nitric acid particles in cold thick ice clouds observed at global scale: Link with lightning, temperature, and upper tropospheric water vapor, J. Geophys. Res., 112, D05212, doi:10.1029/2005JD006602.
- Chiriaco, M., et al. (2007), Comparison of CALIPSO-Like, LaRC, and MODIS Retrievals of Ice-Cloud Properties over SIRTA in France and Florida during CRYSTAL-FACE, J. Appl. Meteor. Climat., 46, 249-272, doi:10.1175/JAM2435.1.
- Hu, Y., et al. (2007), Global statistics of liquid water content and effective number concentration of water clouds over ocean derived from combined CALIPSO and MODIS measurements, Atmos. Chem. Phys., 7, 3353-3359, doi:10.5194/acp-7-3353-2007.
- Huang, J., et al. (2007), Summer dust aerosols detected from CALIPSO over the Tibetan Plateau, Geophys. Res. Lett., 34, L18805, doi:10.1029/2007GL029938.
- Lin, B., et al. (2007), Coincident occurrences of tropical individual cirrus clouds and deep convective systems derived from TRMM observations, Geophys. Res. Lett., 34, L14804, doi:10.1029/2007GL029768.
- Mecikalski, J. R., et al. (2007), Aviation Applications for Satellite-Based Observations of Cloud Properties, Convection Initiation, In-Flight Icing, Turbulence, and Volcanic Ash, Bull. Am. Meteorol. Soc., 1589-1607, doi:10.1175/BAMS-88-10-1589.
- Wang, D., et al. (2007), Real-time mesoscale forecast support during the CLAMS field campaign, Adv. Atmos. Sci., 24, 599-605, doi:10.1007/s00376-007-0599-3.
- Dong, X., B. Xi, and P. Minnis (2006), A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility. Part II: Cloud Fraction and Surface Radiative Forcing, J. Climate, 19, 1765-1783.
- Dong, X., B. Xi, and P. Minnis (2006), Observational evidence of changes in water vapor, clouds, and radiation at the ARM SGP site, Geophys. Res. Lett., 33, L19818, doi:10.1029/2006GL027132.
- Garrett, T., et al. (2006), Convective formation of pileus cloud near the tropopause, Atmos. Chem. Phys., 6, 1185-1200, doi:10.5194/acp-6-1185-2006.
- Huang, J., et al. (2006), Satellite-based assessment of possible dust aerosols semi-direct effect on cloud water path over East Asia, Geophys. Res. Lett., 33, L19802, doi:10.1029/2006GL026561.
- Huang, J., et al. (2006), Possible influences of Asian dust aerosols on cloud properties and radiative forcing observed from MODIS and CERES, Geophys. Res. Lett., 33, L06824, doi:10.1029/2005GL024724.
- Huang, J., et al. (2006), Determination of ice water path in ice-over-water cloud systems using combined MODIS and AMSR-E measurements, Geophys. Res. Lett., 33, L21801, doi:10.1029/2006GL027038.
- Ignatov, A., et al. (2006), Consistency of global MODIS aerosol optical depths over ocean on Terra and Aqua CERES SSF data sets, J. Geophys. Res., 111, D14202, doi:10.1029/2005JD006645.
- Kato, S., et al. (2006), Seasonal and interannual variations of top-of-atmosphere irradiance and cloud cover over polar regions derived from the CERES data set, Geophys. Res. Lett., 33, L19804, doi:10.1029/2006GL026685.
- Lin, B., et al. (2006), The Effect of Environmental Conditions on Tropical Deep Convective Systems Observed from the TRMM Satellite, J. Climate, 19, 5745-5761.
- Mace, J., et al. (2006), Cloud radiative forcing at the Atmospheric Radiation Measurement Program Climate Research Facility: 1. Technique, validation, and comparison to satellite-derived diagnostic quantities, J. Geophys. Res., 111, D11S90, doi:10.1029/2005JD005921.
- Chepfer, H., et al. (2005), Particle habit in tropical ice clouds during CRYSTAL-FACE: Comparison of two remote sensing techniques with in situ observations, J. Geophys. Res., 110, D16204, doi:10.1029/2004JD005455.
- Dong, X., P. Minnis, and B. Xi (2005), A Climatology of Midlatitude Continental Clouds from the ARM SGP Central Facility: Part I: Low-Level Cloud Macrophysical, Microphysical, and Radiative Properties, J. Climate, 18, 1391-1410.
- Duda, D., et al. (2005), Estimated contrail frequency and coverage over the contiguous United States from numerical weather prediction analyses and flight track data, Meteorologische Zeitschrift, 14, 537-548, doi:10.1127/0941-2948/2005/0050.
- Garber, D. P., P. Minnis, and P. K. Costulis (2005), A commercial flight track database for upper tropospheric aircraft emission studies over the USA and southern Canada, Meteorologische Zeitschrift, 14, 445-452 (), doi:10.1127/0941-2948/2005/0061.
- Garrett, T., et al. (2005), Evolution of a Florida Cirrus Anvil, J. Atmos. Sci., 62, 2352-2372.
- Hansen, J., et al. (2005), Efficacy of climate forcings, J. Geophys. Res., 110, D18104, doi:10.1029/2005JD005776.
- Ignatov, A., et al. (2005), Two MODIS Aerosol Products over Ocean on the Terra and Aqua CERES SSF Datasets, J. Atmos. Sci., 62, 1008-1031.
- Mace, J., et al. (2005), Evaluation of Cirrus Cloud Properties Derived from MODIS Data Using Cloud Properties Derived from Ground-Based Observations Collected at the ARM SGP Site, J. Appl. Meteor., 44, 221-240.
- Palikonda, R., et al. (2005), Contrail coverage derived from 2001 AVHRR data over the continental United States of America and surrounding areas, Meteorologische Zeitschrift, 14, 525-536, doi:10.1127/0941-2948/2005/0051.
- Wielicki, B., et al. (2005), Changes in Earth’s Albedo Measured by Satellite, Science, 308, 825, doi:10.1126/science.1106484.
- Zhang, M. H., et al. (2005), Comparing clouds and their seasonal variations in 10 atmospheric general circulation models with satellite measurements, J. Geophys. Res., 110, D15S02, doi:10.1029/2004JD005021.
- Zhao, T. X.-P., et al. (2005), Comparison and analysis of two aerosol retrievals over the ocean in the Terra/Clouds and the Earth’s Radiant Energy System–Moderate Resolution Imaging Spectroradiometer single scanner footprint data: 1. Global evaluation, J. Geophys. Res., 110, D21208, doi:10.1029/2005JD005851.
- Zhao, T. X.-P., et al. (2005), Comparison and analysis of two aerosol retrievals over the ocean in – the Terra/ Clouds and the Earth’s Radiant Energy System– Moderate Resolution Imaging Spectroradiometer single scanner footprint data: 2. Regional evaluation, J. Geophys. Res., 110, D21209, doi:10.1029/2005JD005852.
- Duda, D., et al. (2004), A Case Study of the Development of Contrail Clusters over the Great Lakes, J. Atmos. Sci., 61, 1132-1146.
- Sherwood, S. C., P. Minnis, and M. McGill (2004), Deep convective cloud-top heights and their thermodynamic control during CRYSTAL-FACE, J. Geophys. Res., 109, D20119, doi:10.1029/2004JD004811.
- Sherwood, S. C., et al. (2004), Underestimation of deep convective cloud tops by thermal imagery, Geophys. Res. Lett., 31, L11102, doi:10.1029/2004GL019699.
- Smith, G. L. S., et al. (2004), Clouds and Earth radiant energy system: an overview, Advances in Space Research, 33, 1125-1133, doi:10.1016/S0273-1177.
- Curry, J. A., et al. (2000), FIRE Arctic clouds experiment., Bulletin of the American Meteorlogical Society, 81, 5.
- Stephens, G., et al. (2000), The Department of Energy’s Atmospheric Radiation Measurement (ARM) Unmanned Aerospace Vehicle (UAV) Program, Bulletin of the American Meteorlogical Society, 81, 2915.
- Westphal, D. L., et al. (1996), Initialization and validation of a simulation of cirrus using FIRE-II Data, J. Atmos. Sci., 53, 3397-3429.