Parameterization of size of organic and secondary inorganic aerosol for efficient representation of global aerosol optical properties

Zhu, H., R. Martin, B. Croft, S. Zhai, C. Li, L. Bindle, J. Pierce, R.Y.-W. Chang, B.E. Anderson, L.D. Ziemba, J.W. Hair, R. Ferrare, C. Hostetler, I. Singh, D. Chatterjee, J. Jimenez-Palacios, P. Campuzano Jost, B. Nault, J. Dibb, J. Schwarz, and A. Weinheimer (2023), Parameterization of size of organic and secondary inorganic aerosol for efficient representation of global aerosol optical properties, Atmos. Chem. Phys., doi:10.5194/acp-23-5023-2023.
Abstract

Accurate representation of aerosol optical properties is essential for the modeling and remote sensing of atmospheric aerosols. Although aerosol optical properties are strongly dependent upon the aerosol size distribution, the use of detailed aerosol microphysics schemes in global atmospheric models is inhibited by associated computational demands. Computationally efficient parameterizations for aerosol size are needed. In this study, airborne measurements over the United States (DISCOVER-AQ) and South Korea (KORUS-AQ) are interpreted with a global chemical transport model (GEOS-Chem) to investigate the variation in aerosol size when organic matter (OM) and sulfate–nitrate–ammonium (SNA) are the dominant aerosol components. The airborne measurements exhibit a strong correlation (r = 0.83) between dry aerosol size and the sum of OM and SNA mass concentration (MSNAOM ). A global microphysical simulation (GEOS-Chem-TOMAS) indicates that MSNAOM and the ratio between the two components (OM/SNA) are the major indicators for SNA and OM dry aerosol size. A parameterization of the dry effective radius (Reff ) for SNA and OM aerosol is designed to represent the airborne measurements (R 2 = 0.74; slope = 1.00) and the GEOS-Chem-TOMAS simulation (R 2 = 0.72; slope = 0.81). When applied in the GEOS-Chem high-performance model, this parameterization improves the agreement between the simulated aerosol optical depth (AOD) and the ground-measured AOD from the Aerosol Robotic Network (AERONET; R 2 from 0.68 to 0.73 and slope from 0.75 to 0.96). Thus, this parameterization offers a computationally efficient method to represent aerosol size dynamically.

PDF of Publication
Download from publisher's website
Research Program
Tropospheric Composition Program (TCP)
Mission
KORUS-AQ
DISCOVER-AQ