Ozone correlations between mid-tropospheric partial columns and the near-surface at two mid-atlantic sites during the DISCOVER-AQ campaign in July 2011

Martins, D., R.M. Stauffer, A.M. Thompson, H. Halliday, D. Kollonige, E. Joseph, and A. Weinheimer (2013), Ozone correlations between mid-tropospheric partial columns and the near-surface at two mid-atlantic sites during the DISCOVER-AQ campaign in July 2011, J Atmos Chem, 72, 37, doi:10.1007/s10874-013-9259-4.
Abstract

The current network of ground-based monitors for ozone (O3) is limited due to the spatial heterogeneity of O3 at the surface. Satellite measurements can provide a solution to this limitation, but the lack of sensitivity of satellites to O3 within the boundary layer causes large uncertainties in satellite retrievals at the near-surface. The vertical variability of O3 was investigated using ozonesondes collected as part of NASA’s Deriving Information on Surface Conditions from COlumn and VERtically Resolved Observations Relevant to Air Quality (DISCOVER-AQ) campaign during July 2011 in the Baltimore, MD/Washington D.C. metropolitan area. A subset of the ozonesonde measurements was corrected for a known bias from the electrochemical solution strength using new procedures based on laboratory and field tests. A significant correlation of O3 over the two sites with ozonesonde measurements (Edgewood and Beltsville, MD) was observed between the mid-troposphere (7–10 km) and the near-surface (1–3 km). A linear regression model based on the partial column amounts of O3 within these subregions was developed to calculate the near-surface O3 using mid-tropospheric satellite measurements from the Tropospheric Emission Spectrometer (TES) onboard the Aura spacecraft. The uncertainties of the calculated nearsurface O3 using TES mid-tropospheric satellite retrievals and a linear regression model were less than 20 %, which is less than that of the observed variability of O3 at the surface in this region. These results utilize a region of the troposphere to which existing satellites are more sensitive compared to the boundary layer and can provide information of O3 at the near-surface using existing satellite infrastructure and algorithms. D. K. Martins (*) : R. M. Stauffer : A. M. Thompson : H. S. Halliday : D. Kollonige Department of Meteorology, Pennsylvania State University, 503 Walker Building, University Park, PA 16802, USA e-mail: dkm18@psu.edu E. Joseph Department of Physics and Astronomy, Howard University, 2355 6th St. NW, Washington, DC 20059, USA A. J. Weinheimer National Center for Atmospheric Research, PO Box 3000, Boulder, CO 80307-3000, USA

PDF of Publication
Download from publisher's website
Research Program
Tropospheric Composition Program (TCP)