Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Optical properties

Hlavka, D., J. Yorks, S.A. Young, M.A. Vaughan, R. Kuehn, M. McGill, and S.D. Rodier (2012), Airborne validation of cirrus cloud properties derived from CALIPSO lidar measurements: Optical properties, J. Geophys. Res., 117, D09207, doi:10.1029/2011JD017053.
Abstract

The Cloud-Aerosol Lidar Infrared Pathfinder Satellite Observations (CALIPSO) satellite was successfully launched in April 2006 to study cloud and aerosol layers using range-resolved laser remote sensing. Dedicated flights were conducted from July 26 to August 14, 2006 using the airborne Cloud Physics Lidar (CPL) to validate the CALIPSO lidar (CALIOP) data products. This paper presents results from coincident ice cloud measurements of lidar ratio, extinction coefficient, and optical depth. Flight segment case studies are shown as well as statistics for all coincident measurements during this CALIPSO-CloudSat Validation Experiment (CC-VEX). For the penetrated portion of opaque layers, CALIOP estimates of lidar ratio and extinction are substantially lower than the corresponding CPL values. Significant differences were also found for measurements of horizontally aligned ice, where different instrument viewing geometries precluded meaningful comparisons. After filtering the data set to exclude these discrepancies, overall CALIOP lidar ratio and extinction averages compared favorably to within 1% of overall CPL averages. When restricting the data further to exact coincident in-cloud point-pairs, CALIOP lidar ratios remained close to CPL values, averaging 2.1% below CPL, and the retrieved extinction and optical depth averaged 14.7% above CPL values, a result partially of higher average CALIOP attenuated backscatter but still a respectably close match.

PDF of Publication
Download from publisher's website
Research Program
Atmospheric Composition
Radiation Science Program (RSP)
Mission
CPL
CALIPSO