Systematic bias in evaluating chemical transport models with maximum daily 8 h...
Chemical transport models frequently evaluate their simulation of surface ozone with observations of the maximum daily 8 h average (MDA8) concentration, which is the standard air quality policy metric. This requires successful simulation of the surface ozone diurnal cycle including nighttime depletion, but models often have difficulty simulating this diurnal cycle for a number of reasons, including (1) vertical grid structure in the surface layer, (2) timing of changes in mixed layer dynamics and ozone deposition velocity across the day–night transition, (3) poor representation of nighttime stratification, and (4) uncertainties in ozone nighttime deposition. We analyze the problem with the GEOS-Chem model, taking as a representative case study the Southeast US during the NASA SEAC4 RS aircraft campaign in August–September 2013. The model is unbiased relative to the daytime mixed layer aircraft observations but has a mean +8 ppb bias at its lowest level (65 m) relative to MDA8 surface ozone observations. The bias can be corrected to +5 ppb by implicit sampling of the model at the 10 m altitude of the surface observations. The model does not capture frequent observed occurrences of < 20 ppb MDA8 surface ozone on rainy days, possibly because of enhanced ozone deposition to wet surfaces that is unaccounted for. Restricting the surface ozone evaluation to dry days still shows inconsistencies with MDA8 ozone because of model errors in the ozone diurnal cycle. Restricting the evaluation to afternoon ozone completely removes the bias. We conclude that better representation of diurnal variations in mixed layer dynamics and ozone deposition velocities is needed in models to properly describe the diurnal cycle of ozone.