Synonyms: 
P3B
P-3 Orion
NASA P-3B
NASA P-3
NASA-P3B
P-3
P-3B
P3
P3-B
Associated content: 

Airborne Multichannel Microwave Radiometer

The Airborne Multichannel Microwave Radiometer (AMMR) measures thermal microwave emission (in degrees Kelvin of brightness temperature) from surface and atmosphere. The up-looking radiometer at 21 and 37 GHz is a component of AMMR that was developed in the 1970's for precipitation measurements from an aircraft. The entire AMMR assembly covers a frequency range of 10-92 GHz. The 21/37 GHz unit has been flown in many types of aircraft during the past three decades in various field campaigns. It was refurbished during the year 2000 and is ready for flight again.

The fixed-beam Dicke radiometer has a beam width of about 6 degrees and is currently programmed with radiometric output every second. The temperature sensitivity is < 0.5 K, and the calibration accuracy is about ±4 K. The calibration is performed on the ground by viewing targets of known brightness (e.g., sky and absorber with known brightness temperature). The unit can be installed in one of the windows of the NASA P-3 aircraft so that it views at an angle of about 15º from zenith. Thus, it is necessary to spiral the aircraft gradually down to region below the freezing level in order to make measurements effectively. Ideally, the aircraft descends at the rate of about 1 km per 5 minutes. The system requires a bottle of N2 gas to keep the wave guides dry during the in-flight operation.

Instrument Type: 
Measurements: 
Aircraft: 
Convair 580 NRC, DC-8 - AFRC, P-3 Orion - WFF
Point(s) of Contact: 

Advanced Microwave Precipitation Radiometer

The AMPR is a total power passive microwave radiometer producing calibrated brightness temperatures (TB) at 10.7, 19.35, 37.1, and 85.5 GHz. These frequencies are sensitive to the emission and scattering of precipitation-size ice, liquid water, and water vapor. The AMPR performs a 90º cross-track data scan perpendicular to the direction of aircraft motion. It processes a linear polarization feed with full vertical polarization at -45º and full horizontal polarization at +45º, with the polarization across the scan mixed as a function of sin2, giving an equal V-H mixture at 0º (aircraft nadir). A full calibration is made every fifth scan using hot and cold blackbodies. From a typical ER-2 flight altitude of ~20 km, surface footprint sizes range from 640 m (85.5 GHz) to 2.8 km (10.7 GHz). All four channels share a common measurement grid with collocated footprint centers, resulting in over-sampling of the low frequency channels with respect to 85.5 GHz.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Two-Dimensional Electronically Scanning Thinned-Array Radiometer

2D-STAR is a dual-polarized L-band radiometer that employs aperture synthesis in two dimensions. This airborne instrument is the natural evolution of the Electronically Scanned Thinned Array Radiometer, which employs aperture synthesis only in the across-track dimension, and represents a further step in the development of aperture synthesis for remote sensing applications. 2D-STAR was successfully tested in June 2003 and, then, participated in the SMEX03 and SMEX04 soil moisture experiments.

The 2D-STAR instrument was developed as a research instrument with the flexibility to test options in the evolution of the technology as it existed in ESTAR (synthesis in one dimension, one polarization, and analog processing) to aperture synthesis in two dimensions, dual polarization, and digital processing. The 2D-STAR was designed to fly on a P-3 research aircraft (the NASA Orion P-3B), and to simplify installation, the size was chosen to be similar to that of ESTAR. Several options, such as the choice of the antenna array and number of bits in the digital processor, were made to accommodate potential research rather than efficiency of design.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Aerosol Optical Properties

Aerosols (particulate matter) have a dramatic effect on radiative forcing of the climate, in some cases cooling and in other cases warming. The Fourth Assessment Report of the IPCC estimates that direct radiative forcing due to all aerosols is a cooling of -0.50 W m-2 with absorbing aerosol (black carbon) responsible for a warming of +0.22 W m-2, but the uncertainties associated with these numbers are very large. Better measurements of the optical properties of aerosols, especially absorption coefficient and asymmetry parameter, and their spatial and temporal distribution are required to reduce these uncertainties and improve the ability of models to predict climate change. Aero3X was designed to provide such measurements. It is a light weight (11 kg), compact (0.25 x 0.30 x 0.6 m), and fast (1 Hz sample rate) instrument intended for use on an Unmanned Aerial System (UAS) but suitable for flight on other aircraft and for surface measurements. Aero3X uses an off-axis cavity ring-down technique to measure extinction coefficient and a reciprocal nephelometry technique for measurement of total-, forward- and back-scatter coefficients at wavelengths of 405 nm and 675 nm. Its outstanding precision (0.1 Mm-1) and sensitivity (0.2 Mm- 1) allow the determination of absorption coefficient, single-scattering albedo, estimates of backscatter to extinction ratio and asymmetry parameter at both wavelengths, and Angstrom exponent. Together with its humidification system for measurement of the dependence of aerosol optical properties on relative humidity, these represent a complete set of the aerosol optical properties important to climate and air quality. Aero3X was designed to operate in pollution plumes where NO2 may cause interference with the measurement, therefore, a measurement of NO2 mixing ratio is also made.

Instrument Type: 
Aircraft: 
Point(s) of Contact: 

Coherent Radar Depth Sounder

In 1991, NASA initiated an airborne remote sensing program in conjunction with coordinated surface measurements for determining the mass balance of the Greenland ice sheet, which plays in important role in the rise of global sea level. Starting in 1995, NASA combined various efforts on the mass-balance studies into a coordinated effort called Program in Arctic Regional Climate Assessment (PARCA). The University of Kansas has been participating in this program to make airborne ice thickness measurements using coherent radar depth sounders. Since 1993, the authors have collected a large volume of ice-thickness data over the ice sheet. They have demonstrated that coherent radars can acquire ice thickness and internal structure data over the thickest part of the ice sheet and outlet glaciers located around the ice margin.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Airborne Expendable Conductivity Temperature Depth Probe

The AXCTDs measure the ocean salinity, or saltiness (proportional to conductivity), and temperature, which are necessary 1) for computing ocean density, stability and buoyancy, and 2) for identifying different ocean water masses.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Airborne Cloud Radar

The utility of millimeter-wave radars have been successfully used for cloud sensing and cloud microphysical studies. Studies of the impact of cloud feedbacks on the earth's radiation budget have underscored the importance of having a means of measuring the vertical distribution of clouds. Millimeter-wave radars can provide this information under most conditions, with high resolution, using a relatively compact system.

The Airborne Cloud Radar (ACR) for profiling cloud vertical structure was developed by the Jet Propulsion Laboratory and the University of Massachusetts in 1996. It is a W-band (95 GHz) polarimetric Doppler radar designed as a prototype airborne facility for the development of the 94 GHz Cloud Profiling Radar (CPR) for NASA CloudSat mission.

The ACR is a third-generation millimeter-wave cloud radar. While adopting the well tested techniques used by its predecessors, ACR also has a number of new features including an internal calibration loop, frequency agility, digital I and Q demodulation, digital matched filtering, and a W-band low-noise amplifier.

Instrument Type: 
Measurements: 
Aircraft: 
DC-8 - AFRC, P-3 Orion - WFF, Twin Otter (DOE)
Point(s) of Contact: 

Pages

Subscribe to RSS - P-3 Orion - WFF