Synonyms: 
P3B
P-3 Orion
NASA P-3B
NASA P-3
NASA-P3B
P-3
P-3B
P3
P3-B
WFF P3-B
Associated content: 

Polarization Modulated Gas Filter Correlation Radiometer

A non-mechanical optical switch is provided for alternately switching a monochromatic or quasi-monochromatic light beam along two optical paths. A polarizer polarizes light into a single, e.g., vertical component which is then rapidly modulated into vertical and horizontal components by a polarization modulator. A polarization beam splitter then reflects one of these components along one path and transmits the other along the second path. In the specific application of gas filter correlation radiometry, one path is directed through a vacuum cell and one path is directed through a gas correlation cell containing a desired gas. Reflecting mirrors cause these two paths to intersect at a second polarization beam splitter which reflects one component and transmits the other to recombine them into a polarization modulated beam which can be detected by an appropriate single sensor.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Pathfinder Advanced Radar Ice Sounder

In July 2005, the Johns Hopkins University, Applied Physics Laboratory began “Pathfinder Airborne Radar Ice Sounder (PARIS)” funded under the NASA Instrument Incubator Program (IIP). The primary objective of this project was the first feasibility demonstration of successful radar sounding of ice sheet layering and bottom topography from a high-altitude platform. Major contributing factors included a high-fidelity 150-MHz radar, supported by along-track partially- coherent processing. “High-fidelity” implies very wide dynamic range, extreme linearity, and very low sidelobes generated by the transmitted pulse. “Partially- coherent processing” implies the delay-Doppler technique, previously proven in airborne radar altimeter and low-altitude radar ice sounding embodiments. The radar was mounted on the NASA P-3, and deployed on a mission over the Greenland ice sheet in the spring of 2007. Data were recorded on board as well as displayed in flight on a quick-look processor. The data subsequently were processed in the laboratory to quantify performance characteristics, including dynamic range, sidelobe level control, and contrast improvement from the delay-Doppler algorithm.

The transmit waveform is a 5-MHz bandwidth chirp at a 150-MHz operating frequency with a trapezoidal envelope. Such severe weighting is essential to reduce the ringing commonly associated with the initial on-off transition of weakly-weighted waveforms. The 180-W (peak) linear-FM pulse has ~6 MHz bandwidth. The amplifier is class AB to help ensure the high linearity needed to suppress the internal clutter (sidelobes) generated by the chirp waveform. Laboratory measurements of the driver and power amplifier show excellent linearity with a two-tone third-order inter-modulation of at least -26 dBc at peak power.

There is no down conversion or IF signal within the receiver, greatly simplifying the design, and eliminating most potential sources of distortion and intermodulation. Upon reception, the radar A/D operates on the RF signal directly out of the LNA. The sample rate is well below Nyquist, but it is chosen so that the resulting spectra shift an alias of the main signal to offset baseband in a clear channel. The receiver includes variable attenuators to adjust the voltage range of the signal input to the analog-to- digital converter as well as sensitivity time control (STC) to increase the effective dynamic range of the response as a function of depth of penetration. The overall noise figure of the receiver is less than 5.5 dB with a gain of over 60 dB and a 45 dBm third-order intercept point.

The digital components consist of a field programmable gate array (FPGA) radar synchronizer, a direct digital synthesizer (DDS), and an under-sampling analog-to-digital converter (ADC). All components of the digital subsection are clocked by a stable 66.6 MHz reference oscillator. The radar data are time-tagged by reference to GPS. The flights included passes over the summit ridge, from which results show internal layering, and the bottom profile at several km depth.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

PAN CIMS Instrument by Georgia Tech and NCAR

The PAN-CIGAR chemical ionization mass spectrometer which measures up to 7 PAN species simultaneously and semi-continuously with a time resolution of ~2 seconds. The method is based on the detection of the acylperoxy radicals formed from thermal decomposition of the PAN species at the inlet by reacting them with iodide ions, which are formed by passing methyl iodide diluted in nitrogen through an α–particle source. The reaction of the peroxy acyl radicals with I- forms IO and the acyl ion, which is detected using a quadrupole mass spectrometer (Extrel) at a mass to charge ratio of 59 in the case of PAN. The method is very specific for PAN type compounds and the limit of detection is ~1 pptv/s or better for most PAN species. The instrument employs a realtime continuous calibration using isotopically labeled PAN produced in-situ by a photolytic calibration source.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Multichannel Coherent Radar Depth Sounder

The Center for Remote Sensing of Ice Sheets (CReSIS) has developed radars (MCoRDS) that operate over the frequency range from 140 to 230 MHz with multiple receivers developed for airborne sounding and imaging of ice sheets. MCoRDS radars have an adjustable radar bandwidth of 20 MHz to 60 MHz. Multiple receivers permit digital beamsteering for suppressing cross-track surface clutter that can mask weak ice-bed echoes and strip-map synthetic aperture radar (SAR) images of the ice-bed interface. With 200 W of peak transmit power, a loop sensitivity > 190 dB is achieved. These radars are flown on twin engine and long-range aircraft including NASA P-3 and DC-8.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

MODIS/ASTER Airborne Simulator

The MASTER is similar to the MAS, with the thermal bands modified to more closely match the NASA EOS ASTER (Advanced Spaceborne Thermal Emission and Reflection Radiometer) satellite instrument, which was launched in 1998. It is intended primarily to study geologic and other Earth surface properties. Flying on both high and low altitude aircraft, the MASTER has been operational since early 1998.

Instrument Type: Multispectral Imager
Measurements: VNIR/SWIR/MWIR/LWIR Imagery

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Multi-kilohertz Microlaser Altimeter

Developed by Dr. John Degnan under the Instrument Incubator Program, the MMLA is designed to detect single photon returns reflected from targets of interest and determine their height. This instrument is comprised of an optical bench, transmit and receive optics, computer-controlled iris, spatial and spectral filters, stray-light baffles, interface optics to a micro-laser transmitter, photo detector, and CCD camera.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Millimeter Imaging Radiometer

The Millimeter-wave Imaging Radiometer (MIR) is a cross-track-scanning radiometer that measures radiation at nine frequencies. In every scanning cycle of about 3 seconds in duration, it views two external calibration targets. MIR responds predominantly to atmospheric parameters like water vapor, clouds, and precipitation.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

MACRES Ground Receiving Station (MGRS)

Aircraft: 
Point(s) of Contact: 

Marshall Airborne Polarimetric Imaging Radiometer

The Marshall Airborne Polarimetric Imaging Radiometer (MAPIR) is a dual beam, dual angle polarimetric, scanning L band passive microwave radiometer system developed by the Observing Microwave Emissions for Geophysical Applications (OMEGA) team at MSFC. MAPIR observes naturally-emitted radiation from the ground primarily for remote sensing of land surface brightness temperature from which we can retrieve soil moisture and possibly surface or water temperature and ocean salinity.

MAPIR consists of an electronically steered phased array antenna comprised of 81 receiving patch elements and associated electronics to provide the required beam steering capability. The antenna produces two independent beams that can be individually scanned to any user-defined scan angle. The antenna is connected to four microwave radiometers and a microwave spectrum analyzer. Two radiometers operate over a narrow band (science band) between 1400-1427 MHz. Two other radiometers operate over a wider bandwidth (1350-1450 MHz) and are used for Radio Frequency interference (RFI) surveillance. The outputs of the four radiometers are routed to the digital back end module that digitizes and filters the signal into 16 well isolated spectral sub-bands and computes the first four statistical moments in each sub-band from which the radio brightness temperature and kurtosis (a statistical measure, indicative of RFI) can be computed in post-processing.

MAPIR can operate in two user-selectable modes: Single-Beam Dual (simultaneous) Polarization and Dual (simultaneous) Beam Single Polarization. In the first mode, both beams of the antenna are directed to scan to the same angle, but the radiometers are observing orthogonal polarizations (horizontal and vertical) at the same time. In the second mode, the two antenna beams can be directed to different azimuth and/or angles and the radiometers observe the same polarization at the same time. The instrument is capable of electronic beam steering to one-degree of resolution from 0-40 degrees in elevation and 0-360 degrees azimuth in both beams. MAPIR precision is 0.01K and brightness temperature accuracy is 5 degrees K accuracy over a 10 ms integration interval, but is capable of achieving 0.5K sensitivity over a 1 second integration interval. Near-term improvements to MAPIR will bring that accuracy to 3 K over a 10 ms integration period.

Instrument Type: 
Measurements: 
Aircraft: 
Point(s) of Contact: 

Land, Vegetation and Ice Sensor

The Laser Vegetation Imaging Sensor (LVIS) is an airborne, scanning laser altimeter, designed and developed at NASA's Goddard Space Flight Center (GSFC). LVIS operates at altitudes up to 10 km above ground, and is capable of producing a data swath up to 1000 m wide nominally with 25-m wide footprints. The entire time history of the outgoing and return pulses is digitised, allowing unambiguous determination of range and return pulse structure. Combined with aircraft position and attitude knowledge, this instrument produces topographic maps with dm accuracy and vertical height and structure measurements of vegetation. The laser transmitter is a diode-pumped Nd:YAG oscillator producing 1064 nm, 10 ns, 5 mJ pulses at repetition rates up to 500 Hz. LVIS has recently demonstrated its ability to determine topography (including sub-canopy) and vegetation height and structure on flight missions to various forested regions in the US and Central America. The LVIS system is the airborne simulator for the Vegetation Canopy Lidar (VCL) mission (a NASA Earth remote sensing satellite due for launch in year 2000), providing simulated data sets and a platform for instrument proof-of-concept studies. The topography maps and return waveforms produced by LVIS provide Earth scientists with a unique data set allowing studies of topography, hydrology, and vegetation with unmatched accuracy and coverage.

Instrument Type: 
Measurements: 
Point(s) of Contact: 

Pages

Subscribe to RSS - P-3 Orion - WFF